
Optimal Control Project

Štěpán Bláha, Divij Babbar,

Iram Gallegos, Kubička Matěj

June 9, 2012

LQR control

self-balancing two-wheeled robot built

with lego mindstorms



Chapter 1

Introduction

The goal of this project was to design, simulate, create, test and measure
a self-balancing two-wheeled robot with LQR regulator. Mechanically, the
robot is based on LEGO NXT construction kit. The robot is modelled in
Matlab Simulink with ECRobot API for LEGO Mindstorms. For our pur-
poses, we have utilized already existing example called NXTway-GS, which
is included in ECRobot library.

1.1 Lego NXT Brick

The NXT brick is a programmable device focused in robotics, and was devel-
oped in released by Lego in 2006. It has a series of products designed to work
with it achieving some robotics tasks. Its main part is the NXT Intelligent
Brick, which can take up to four sensors as an input and control 3 actuators
using RJ12 cables. The brick has a 100x60 pixel monochrome LCD display,
and 4 push buttons which can be used to interact with the SW loaded inside.
A speaker is also part of the system, and can play sound files at around 8
kHz. The brick used by our group has a Li-Ion rechargeable battery, but
there’s also the option of using 6 AA batteries of 1.5 V each.
The device can be used in a variety of ways depending on which peripherals
are attached to it and the control models which are executed with it. In this
document we will present the work done in the NXTway-GS robot.

1.2 Matlab, Simulink and RTW-EC

The whole system is described in Matlab and Simulink, both for simulation
and for the code generation that must be uploaded to the NXT brick in
order to do the real execution. It is necessary to download the Embedded

2



Figure 1.1: The LEGO NXT Brick

Coder Robot NXT from (ecrobotnxt12) as an environment for our models
files. Along with this, it is necessary to have the following Matlab toolbox
requirements:

A group of codes and model files were given to us in order to design the Linear
Quadratic Regulator control of the system and use it in the environment.
These files, which will be analyzed further in this document, are the following.
Also, together with Matlab and Simulink, RTW-EC is used to generate the
files which are uploaded to the NXT brick. RTW-EC is a subset of RTW
(which is a real time workshopp developed by Mathworks) containing the
Embedded Coder, which can generate C code directly from the Simulink
Models. Further information is given in the Installation section of this doc-
ument.

3



1.3 NXTway-GS

Along with the brick, we have a series of peripherals which are part of our
whole system. We have an ultrasonic sensor, a HiTechnic Gyro sensor, Right
and Left rotary encoders and DC motors, which can be shown in the next
figure [4].

The values for the constants that will be later used in the mathematical
analysis of the system are shown below.

The values for Jm, n, fm and fW are taken as seem appropriate because

4



Figure 1.2: A list of variables, taken from [2]

they are difficult to measure, as well as the values from Rm, Kb and Kt,
which were taken from a previous project [2]

1.4 Software requirements - Installation

There are several references about the installation of the Embedded Coder
Robot NXT. We needed to use more than one in order to have a fully func-
tional application, so here we present the steps we followed for this installa-
tion.

After downloading Embedded Coder Robot NXT, it’s recommended to
create a ”‘MATLAB” folder in the hard disk of the computer (C: in our
case) and save the ”‘ecrobotnxt”’ folder in it (which is downloaded with
Embedded Coder Robot NXT ). It’s also needed to add the folder in which
our models are saved (”‘models”’ in our case).

Later, the computer needs to have Cygwin with GNU Make installed.
We used version 1.5.24, which can be downloaded from (vinschen12) . This
software should also be installed to an immediate directory in the hard drive,

5



just like C:/cygwin . We must also be sure of selecting as ”Default Text File
Type” the ”Unix/Binary”’ option. Then, in the Devel tree node on screen,
we must be sure to select ”make 3-81-1” in order to have GNU make.

Then we need to install GNU ARM, for which we need to download GCC-
4.0.2 or newer from (gnuarm) . The installation directory should be inside
the Cygwin folder. The dollowing option need to be selected at the moment
of installation:

The wizard should ask to install Cygwin DLLs, but this option should be
unchecked since they will be already installed with the previous step. At the
end of installation, it is asked to add the installation folder to a Windows
Environment Path, but this is not needed.

6



The next step is to install the Lego Standard USB Driver, which can be
downloaded from (fantom), and it’s called Fantom Driver. It’s important
that before installing any Lego firmware, all ATMEL Sam-Ba software must
be uninstalled from the PC.

After, we need to install the enhanced NXT firmware and NeXTTool. So we
download the first in (nxtfirmware) . After, we get NeXTTool at (nexttool),
and we install it inside the Cygwin folder. Keep the NXT firmware inside
the same folder.

A driver which can recognize the NXT connected to the USB port of the
computer must also be included in the installation process. So we must
download the latest version of LibUSB from (libusb). It’s crucial to install
this dll into a directory with no spaces or special characters in the path, so
the best option is to install it in ”C:/libUSB”. We must connect the NXT
with a USB cable to any USB port from the PC, and add it as a specific
driver assigned to a peripheral in the LibUSB application.

After this, all is set up to install the entire Matlab environment by running
a Matlab script. So we just go to Matlab and run the ecrobotnxtsetup.m script
and follow the instructions of its wizard. The successful installation should
give us the possiility of working freely with the model and simulations.

7



Once we have a satisfactory set of models and we want to load it to the
NXT brick, it’s first needed to set it to HW reset mode. This can be achieved
by pressing the button in the left ”shoulder” of the NXT for more than 4
seconds. Doing this successfully will start a ticking similar to a metronome,
indicating that the NXT is now in HW reset mode.

We can now connect the NXT to the PC using the USB cable. We go to
the nxtway gs controller.mdl file and we click in ”Generate code and build the
generated code”. After the code is generated, we can upload it to the NXT
using the ”Download (SRAM)” button. The ”Download (NXT Enhanced
Firmware)” button is used when no firmware has already been uploaded to
the NXT, although we didn’t make use of this in our tests.

Figure 1.3: NXTway-GS Controller

8



Chapter 2

Simulink model, methodology

We used mathematical software Matlab and its extension for modeling -
Simulink. Simulation of robot movement and all necessary parts were based
on the Simulink model, which was already developed by someone else. Nonethe-
less, there were several changes. The most important was to implement ref-
erence path generator inside controller, so we could measure results for the
same inputs in both simulation and real model. Another important change
compared to original model was to create block for accumulating measure-
ment data and sending them via bluetooth.

For measuring robot movement we chose three types of paths (three kinds
of tests). In the first version, the trajectory just forced a robot to stay and
balance on the same place. In the second version, we forced the robot to run
in circles. Finally in the third version we measured response of impulse on
robot’s wanted velocity. It basically means to balance in-place for given time,
then go forward and after given time delay start again to balance in-place.

For comparison of simulation results with real model of a robot we needed
to extract data from both simulation model and real robot. To do that we
made a few changes in the model. We added a few global variables and stored
them into the workspace of Matlab for post-processing (i.e. creating output
graph for comparison with real data). These global variables are also used
for collecting real data from real model. Simply said, we kept track of input
(resp. output) values from all the sensors (resp. actuators).

Measured variables:

• Revolution sensor in left motor θ̇ml

• Revolution sensor in right motor θ̇mr

• Gyroscopic sensor (calibrated) ψ̇

9



Figure 2.1: Simulation 3D visualisation view

• PWM duty cycle for left and right motor

• Wanted translational velocity θ̇

• Wanted rotational velocity φ̇

• Body angle (already calculated by robot MPU)

• CPU time register (for time scaling purposes)

2.1 Creating reference path

As outlined above, we had to design reference path generators. This is one
of the most important blocks, which are used in the model. The Reference
generator simulates a reception of commands over Bluetooth. Basically, it
is an input for robot’s balance & drive control regulator. In original model,
the robot was supposed to be controlled via Bluetooth from a gamepad con-
nected to the computer. We do not need, nor want, a real remote control, it
would bring human-factor errors to the mneasurements. We just needed to
force the robot to do specific movement in specific time, so we can compare
measurement between simulation and real robot.

10



As you can see in figure below, the reference generator have two inputs.
More specifically it has two changable parameters. The first one - in figure
signed as rdot - represents forward or backward movement coeficient. If it
is set to plus one, it is maximum forward velocity. On the other hand if it
is minus one, it is maximum backward velocity. The second parameter of
the generator - in figure signed as thetadot - represent rotation coeficient.
As it was with previous parameter, the same hold with thetadot - value plus
one represents maximum rotation velocity in positive sense, minus one is
analogically the same in negative sense.

Please note that thetadot is actually parameter φ̇ and rdot is θ̇. There is
no hidden sense in this. This is a mistake which was done by our predecessor,
and we have decided to keep it. We haven’t changed reference generator block,
we have only used different input values rdot and thetadot for different tests.

As was said before the first type of trajectory was just simple standing and
balancing on the place (we call it in following text as stationary balancing).
To achieve this, we just simply put zeros for both parameters - zero velocities,
angular and translational.

Figure 3.2 below shows whole reference generator block with gain coefi-
cients and simulated packing for bluetooth (the robot controller expects a
32-byte packet coming from bluetooth).

Figure 2.2: Reference path generator for stationary balancing

In the second version, when the trajectory was a circle, the parameters of
reference generator are, again, constant. We have set translational velocity
to 0.6. which is experimentally tested maximum safe speed and rotational
velocity to 0.1. This setting caused the robot to make cca 80 centimeters
wide circle per each 17 seconds.

11



Last version required time-varying translational velocity. We had to cre-
ate an impulse - movement forward with stationary balancing before and
after selected time window. For making this trajectory it was necessary to
create a subsystem, which uses internal CPU time. Used ARM7TDMI pro-
cessor has CPU time register, which is basically a counter of oscillator ticks
after PLL multiplication. The ECRobot toolbox utilizes this as a Simulink
block with time normalized to miliseconds (which is only useful considering
that the CPU can run on different frequencies). We have used two constants
- impulse start time and period in miliseconds. The impulse generator sub-
system is depicted in figure 3.3. It replaces constant block rdot used in the
reference generator from figure 3.2

Figure 2.3: Impulse generation subsystem

It is made simply from two condition blocks and two multiplication blocks.
The condition blocks are used for time window detection. Internal time has
to be greater than starting time and also it has to be smaller than sum of
starting time and period. Output product of this subsystem is coeficient 0.6
for forward movement in given interval, otherwise 0. As was said before, 0.6
is maximum feasible velocity.

2.2 Data acquisition

Another important change in the model was data acquisition - we needed to
add a process to save current sensor and actuator data in given time steps.
We have used different approaches for simulation and for real measurement.
In the simulation, we have stored the values with period 4 miliseconds (pe-
riod of balance & drive control task). The real measurements were sent via
Bluetooth with period of 20 miliseconds. How the data were collected is
described in following subchapters.

12



2.2.1 Simulated data generation

As was stated before, we changed the model to store current values of selected
variables into standalone global variables. Those variables were saved to
workspace using “export to workspace” block in standard Simulink block
set. Look at figure 3.4 to see how exactly are data exported from model to
workspace.

The task which did the logging was executed every 4 miliseconds, it makes
about 250 measurements per second. Various variables are tracked, for details
see the list at the beginning of this chapter. After the simulation, we saved
results into extra file by issuing following command

save(’simulation.mat’)

The command stores whole workspace into a binary file simulation.mat. This
file was later used for data processing (see next section).

Figure 2.4: New Simulink Block - over-air data logger

13



2.2.2 Real data generation

We have considered two methods for real-time data collection. The first one
was counting on locally saved data, to be downloaded from NXT Brick a
posteriori. Second approach counted on other (remote) device who collects
the measurements, so the robot just needs to send current data with some
reasonable period. We have chosen latter. It is simpler and lighter on NXT
Brick memory. If we would use the first approach, we would need to fig-
ure out how to save complex datatypes into SRAM or EEPROM memory.
Also we would need a JTAG programmer to download the test result (as far
as authors know, SAM-BA bootloader doesn’t support SRAM/EEPROM
download). Second approach requires only packing of current data in data-
packets. Packed data were sent over-air using Bluetooth module embedded
inside the NXT brick. On the other end of communication channel was a
computer, storing all received data into a file.

We have added into our simulink model a block depicted at figure 3.4. On
the left, all tracked variables are read. This collection corresponds to the list
given in the beginning of this chapter. Then the data goes into conversion
blocks. They are the tricky part. The multiplexer creates an array of 32
bytes, or, in Simulink terminology, vector of 32 fields of uint8. Now, we have
variables of uint16, int32, int8 and uint8 datatypes. All non uint8 datatypes
needs to be converted to a set of uint8’s (bytes). For conversion from signed
to unsigned datatype we have just utilize standard conversion blocks. For
example int8 is converted to uint8 simply with conversion block.

Figure 2.5: Spliting a 32-bit integer into its four inner databytes

Long datatypes (uint16, uint32) had to be splitted to its inner databytes.
Obviously, uint16 consist of higher and lower value of uint8 datatype. The
higher byte can be found by dividing the value by 28. Lower byte is retrieved
by calculating modulo of 28. If we want to convert even bigger datatypes
(in our case uint32), we can cascade process of dividing the value into higher
and lower halves. Simulink submodel used for converting int32 into four

14



databytes is shown above on figure 3.5
It is fair to say, that we had run into problems with exportation of this

subsytem into C (by using RTW-EC). In simulation, block on figure 3.5 was
working perfectly, in reality, the highest databyte is always 0x00, even though
it should be at least 0x80 for all negative numbers. We haven’t found solution
to this problem, but bypassed it by ignoring highest byte. When processing
the data, we consider only lower 24 bits, which is more than enough for our
purposes.

2.3 Data processing

This chapter describes methods used to collect, process and visualise mea-
sured data. It doesn’t give any comments on the results itself (for that see
next chapter), it just describes methodology - how we came to our results.

2.3.1 Bluetooth datapacket format

We have designed extremely simple format while keeping some nice proper-
ties of the information source. First of all, we were afraid that data will be
partially scrambled and that there will be some parts missing, which would
mess up byte orderings. It is very unprobable that any kind of transmission
error will happen over air, because data are heavily guarded with CRC check-
sums (for more information see freely available Bluetooth stack description).
Nonetheless, it can happen between MPU and Bluecore module on the NXT
Brick printed circuit board. There are two wires of UART bus and data are
not guarded. Also, two motors (EMF sources) are close to NXT brick.

The protocol is as follows. Each packet starts with a preambule {0x7F,
0x7F, 0x7F}, followed by all the variables, packed as shown on the figure
3.4. The preambule allows us to detect beginning of the next datapacket. It
is very unprobable that we get somewhere else 3 bytes with same values. It
comes from principle of two’s complement, from ordering of variables in the
datapacket and from error probabilities.

With the preambule, we can always lock to the beginning of next dat-
apacket and as a consequence, we don’t need to care about proper byte
ordering. If there are some missing/added data, they will be ignored. If
unfortunate sequence same as preambule appear in the data, we will se that
on the result as an outlier. Nonetheless, we haven’t seen a single mistake of
this kind in our processed data.

15



2.3.2 Real data collection

Process of collecting real data is described only to help our followers to setup
what is necessarry. The robot has to pose as Bluetooth slave. That means in
the context of Bluetooth stack that the robot do not start connection. That
is in contrast to many other network standards who describe slave as the
node which cannot send data without being asked to. This is not the case,
Bluetooth slave can send data to master freely.

Before we start the robot, we have to connect to it via Bluetooth. This
is usually done on the NXT’s operating system level, before the program
is started. The matlab model comes with NXT OSEK operating system,
which is based on OSEK OS. We have used a Linux box utilizing Xubuntu
12.04 with Bluez protocol stack and Blueman Bluetooth manager for data
collection.

The NXT Brick support SPP Bluetooth profile (Serial Port Protocol),
which works like a virtual serial port between the robot and the computer.
The connection is, of course, tunelled via Bluetooth. Virtually any Bluetooth
device support this kind of functionality, even the SPP profile is not available.
A RFCOMM protocol is a low level protocol in the Bluetooth protocol stack
which utilizes at most about 50 virtual serial links between all the Bluetooth
nodes around. Support for SPP profile merely says that we can control
directly a serial port created by RFCOMM protocol.

Blueman application on the Linux box offers a GUI to start connection
and to create a serial port accessible from /dev/rfcomm0. To store all the
data from the robot, just issue following command:

sudo cat /dev/rfcomm0 > datalog

The sudo makes the program cat running with superuser rights. If you are
using another linux box, you can use command su before calling cat. The
result is written into file named datalog in current folder. See following
listing for the hexadecimal dump of a typical data log.

matej@matej-M50Vc:~$ hd /home/matej/datalog -s 2000 -n 112

000007d0 00 00 00 00 00 00 20 00 7f 7f 7f 00 00 01 47 00

000007e0 00 01 22 00 01 42 65 02 11 3b 40 3c 0a 7e b8 00

000007f0 00 00 00 00 00 00 00 00 20 00 69 42 01 00 45 40

00000800 35 1d 00 00 00 00 24 01 00 00 49 01 00 00 2e f3

00000810 00 00 00 00 00 00 ff ff ff ff 20 00 7f 7f 7f 00

00000820 00 01 50 00 00 01 2a 00 01 42 79 02 00 33 38 3c

00000830 0a 7e d0 00 00 00 00 00 00 00 00 00 20 00 7f 7f

16



2.3.3 Loading a binary log file into matlab

A Matlab function read bt was designed to load the data from the log file.
It takes as an argument a path to the file, then loads the binary content as
one large vector A. The algorithm goes through the vector A and stores a
new record always when it detects an preambule sequence.

There are few things to notice. System time, which is part of each data
sample, is recalculated to 0 when program starts. The databytes of variables
which utilize more than one 8 bits are decoded into a single (original) value.
Gyroscopic measurement is subtracted with constant 512, because the result
is a 10-bit value from ADC, where 0 equals to −512 ◦/s, 512 to 0/s and 1023

to 511 ◦/s (nonetheless the fact that it’s dynamical range is ±300 ◦/s).

1 % Function READ BT
2 % \input realdata Path to a binary file with log of real
3 % robot measurements
4 % \output theta ml Vector with the samples of revolution
5 % sensor on left motor
6 % \output theta mr Vector with the samples of revolution
7 % sensor on right motor
8 % \output clock Time axis reference
9 % \output gyro Vector with gyroscopic measurements

10 % \output psi Vector with calculated body angle
11 % propagation in time
12 function [theta ml, theta mr, clock, gyro, psi]=read bt(path)
13

14 % Load the file into matrix A
15 A = fread(fopen(realdata));
16

17 % Reset all the variables
18 theta ml = [];
19 theta mr = [];
20 clock = [];
21 gyro = [];
22 psi = [];
23 pwm l = [];
24 pwm r = [];
25 r dot = [];
26 theta dot cmd = [];
27 base clock = 0;
28

29 % For all the databytes
30 for i=1:size(A)−32
31 % Detect the preambule
32 if((A(i)==127)&&(A(i+1)==127)&&(A(i+2)==127))
33

17



34 % load current clock
35 clock curr =
36 (2ˆ24).*A(i+11)+(2ˆ16).*A(i+12)+(2ˆ8).*A(i+13)+A(i+14);
37

38 if((base clock==0) && (clock curr>0))
39 % Setup clock offset
40 base clock = clock curr;
41 end
42

43 if(base clock>0)
44 % Store the clock, with proper offset
45 clock = [clock, (clock curr−base clock)/1000];
46

47 % Decode & store theta ml (24−bit signed number)
48 val = (2ˆ16)*A(i+4) + (2ˆ8)*A(i+5) + A(i+6);
49 if(A(i+4)>127)
50 valinv = bitxor(val, 2ˆ24−1);
51 theta ml = [theta ml,−1*(valinv−1)];
52 else
53 theta ml = [theta ml,val];
54 end
55

56 % Decode & store theta mr (24−bit signed number)
57 val = (2ˆ16)*A(i+8) + (2ˆ8)*A(i+9) + A(i+10);
58 if(A(i+8)>127) %treat as negative
59 valinv = bitxor(val, 2ˆ24−1);
60 theta mr = [theta mr,−1*(valinv−1)];
61 else % treat as positive
62 theta mr = [theta mr,val];
63 end
64

65 % Store the gyroscopic measurement, set zero at 512
66 gyro = [gyro,(2ˆ8).*A(i+15)+A(i+16)−512];
67

68 % Store body angle with precision of 0.01
69 psi = [psi,((2ˆ8).*A(i+21)+A(i+22)−2ˆ15)/100];
70

71 % NOTE: pwm l, pwm r, thetadot cmd, rdot cmd unused
72 end
73 end
74 end
75 end

18



2.3.4 Processing & visualising the results

We have developped another Matlab function called process measurement

for processing and visualising the results. This function loads simulation and
real data, then crops them so only a selected time window is processed (there
can be an offset between time window for real and for simulation, which helps
to synchronize the data)

For visualisation, raw measurements needs to be converted its represen-
tatives. First of all, an average theta is calculated as average of theta ml

and theta mr variables. theta is then used to calculate travel distance and a
velocity. distance is calculated as theta multiplied by a constant given by
travel distance when a wheel turns by one degree. velocity is found by cal-
culating derivative (difference) of distance. Simulation data are processed
analogically. They are usually identified by postfix sim.

1 function process measurement(real, sim, start, stop, offset)
2

3 % setup constants
4 wheel diameter = 5.6; % [cm]
5

6 % collect the data
7 [theta ml, theta mr, clock, gyro, psi]=read bt(real);
8 load(sim);
9

10 % crop the real data
11 [˜, start pos] = min(abs(clock−start));
12 [˜, end pos] = min(abs(clock−stop));
13 clock=clock(start pos:end pos);
14 theta ml=theta ml(start pos:end pos);
15 theta mr=theta mr(start pos:end pos);
16 gyro=gyro(start pos:end pos);
17 psi=psi(start pos:end pos);
18

19 % crop the sim data with some offset
20 clock sim = (double(clock sim)/1000)+offset;
21 [˜, start pos] = min(abs(clock sim−start));
22 [˜, end pos] = min(abs(clock sim−stop));
23

24 clock sim=clock sim(start pos:end pos);
25 theta m l sim=double(theta m l sim(start pos:end pos));
26 theta m r sim=double(theta m r sim(start pos:end pos));
27 psi sim f=psi sim f(start pos:end pos);
28

29 % calculate average theta and filter out quantization
30 % noise of the encoder
31 theta = (theta ml + theta mr)/2;

19



32 theta sim = (theta m l sim + theta m r sim)/2;
33 theta = filter(ones(1,2)/2,1,theta ')';
34

35 % approximate theta difference to get real theta dot
36 % (units are degrees per sec)
37 theta dot real = [diff(theta),0];
38

39 % calculate 1−D distance
40 distance = (theta./360).*(pi*wheel diameter);
41 distance sim = ((theta sim./360).*(pi*wheel diameter))';
42

43 % calculate velocity in cm/s
44 velocity = [diff(distance),0];
45 velocity sim = [diff(distance sim),0];
46 velocity sim = filter(ones(1,4)/4,1,velocity sim ')';
47

48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
49 % CALCULATE 2−D DISTANCE MAP
50

51 % get theta derivatives on left and right motor
52 theta dot ml = [diff(theta ml), 0];
53 theta dot mr = [diff(theta mr), 0];
54

55 % recalculate in terms of distance
56 theta dot ml cm = (theta dot ml/360).*(pi*wheel diameter);
57 theta dot mr cm = (theta dot mr/360).*(pi*wheel diameter);
58

59 dcm = theta dot ml cm−theta dot mr cm;
60 phi dot real = asin(dcm / L);
61

62 phi real = cumsum(phi dot real);
63 theta dot real cm=(theta dot real/360).*(pi*wheel diameter);
64

65 x real = cumsum(theta dot real cm.*cos(phi real));
66 y real = cumsum(theta dot real cm.*sin(phi real));
67

68 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
69 % PRINT THE FIGURES
70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
71

72 close all;
73 set(0,'DefaultFigureWindowStyle','docked');
74

75 % Distance 1−D and the velocity
76 figure; hold on;
77 subplot(2,1,1);
78 plot(clock,distance,clock sim,distance sim,'LineWidth',2);
79 grid on;
80 subplot(2,1,2);

20



81 plot(clock,velocity,clock sim,velocity sim,'LineWidth',2);
82 grid on;
83

84 % Gyro and the psi
85 figure; hold on;
86 subplot(2,1,1);
87 p=plot(clock, psi, clock sim, psi sim f, 'LineWidth', 2);
88 grid on;
89 subplot(2,1,2);
90 plot(clock, gyro, 'LineWidth', 2);
91 title('Gyro and psi');
92 grid on;
93 end

The position map was calculated as follows. We have used measurement of
θl and θr in time. First, we needed to calculate θ̇ and φ̇, which is change of
position in polar coordinates, then we have transformed (θ̇, φ̇) to cartesian
coordinate system.

θ̇ =
∆ (θl+θr)

2

∆t
; φ̇ =

∆(θl − θr)
∆t

dx = θ̇t cos φ̇t

dy = θ̇t sin φ̇t

This gave us two equations for two differences (dx, dy). Finally, we have
summed all the samples of both dx, dy over time. As a result we get a single
point on a position map in chosen time T.

x =
T∑
t=1

dx =
T∑
t=1

θ̇t cos φ̇t

y =
T∑
t=1

dy =
T∑
t=1

θ̇t sin φ̇t

Please notice, that even with our best effort, we were not able to find hardware
specification of used encoder. As a consequence, we do not know how exact
the reconstruction is (encoder introduces quantization error, which we cannot
estimate, to make some conclusions regarding map reliability). Nonetheless,
the results seem to be smooth enough and the position map correspond to our
observation.

21



2.4 Other changes in the NXTway-GS project

There are many changes we did to the NXTway-GS model. They are mostly
about removing some unwanted additional features. We have replaced the
task for obstacle avoidance completely with datalogger, by which the sonar
on the robot became dormant, unused. Also, we have removed various modes
like “autonomous mode”, “remote control mode”, we do not need them. At
last, support for control over gamepad was completely removed too.

22



Chapter 3

Results, comments

In this chapter, we present our results and give a number of comments regard-
ing them. We will point out several “weak points”, discuss possible causes
and offer solutions.

3.1 Stationary balancing

In this test, the robot was supposed to balance in-place. With ideal con-
ditions, he wouldn’t move at all. In practice, the robot oscillates back and
forth to keep yourself in upright position.

Used regulator doesn’t really try to keep robot in place, it just tries to
keep angular and translational velocity at zero. This is not the same. For
example, imagine situation when the robot starts with biased body angle -
he will be able to cancel this error, but he will have to change position to
achieve that. The regulator which would minimize planar distance between
starting and current position was not used, although it is possible to design
such regulation (encoders inside actuators give absolute distance between
starting and current position).
In real life conditions we have to deal with several issues - motors have
limited torque, batteries cannot give enough current for motors to enforce
fast startup times, sensor measurements are noisy, motors don’t have same
construction, tires are too soft, and so on..

As a result, when two-wheeled robot wants to stay at upright position,
he needs to oscillate around it. The oscillation amplitude strongly depends
on used regulator, used model, and so on. Additionally, the move back and
forth introduces positional offsets in both X and Y directions (considering
we are balancing on a flat plane).

On a figure 4.1 you can see both simulated and real results. The oscilation

23



0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10

15

Time (s)

D
is

ta
n
c
e
 (

c
m

)
Plot of Distance over time

 

 

Real data

Simulation data

Figure 3.1: Stationary balancing - distance

amplitude is actually somewhat smaller in real measurement than in simu-
lation. It is important to realize that both simulation and real measurement
use the same model, which is simple and unprecise. The LQR regulation
is optimal around (linearized) unstable equilibrium, but only under assump-
tion that the model is equal to real machine (which is not, not exactly). Best
results obtained (on the figure) are with oscillations around 45 milimeters.
We couldn’t lower this amplitude anymore with used model. There is lower
bound for those oscillations given by physical limits of motor, battery and
motor control logic. It is probable that with better model we would be able
to lower this amplitude.

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

0.4

Time (s)

V
e
lo

c
it
y
 (

c
m

/s
)

Plot of Velocity over time

 

 

Real data

Simulation data

Figure 3.2: Stationary balancing - velocity

In following figure 4.2 we can see that the regulator reacts to threatening body
angle by an acceleration peak against the falling. We can see similiarities
between the model and the real machine - even the period is different, the
curves (for both velocity and distance) are similar.
Figure 4.3 shows real, somewhat noisy, gyroscopic measurement. Body angle

24



0 2 4 6 8 10 12 14 16 18 20
−60

−40

−20

0

20

40

60

Time (s)

G
y
ro

 (
°

/s
)

Plot of Gyro over time

 

 

Gyro curve

Figure 3.3: Stationary balancing - gyroscope

at figure 4.4 is calculated by cumulative integration of gyroscope measure-
ment. That is only natural, gyroscope gives speed of rotation, which makes
body angle its integrand. From the body angle curve we read somewhat
periodical behavior with alternating upper and lower extremas.

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10

Time (s)

B
o
d
y
 a

n
g
le

 (
°

)

Plot of Body angle over time

 

 

Real data

Simulation data

Figure 3.4: Stationary balancing - body angle

There is one important difference between measured and simulated body
angle. Measured one is biased by approximately 5 degrees. There can be
several reasons for that, but the most probable one is in wrong calibration
during startup [12]. Since the gyro is calibrated when we hold the robot
in “somewhat upright” position with our own hands, we can easily make
a 5 degree mistake. The integrand of measurements then contain biased
information. If we assume that the body angle offset is a matter of sensor
calibration, not of actual robot body angle bias, then this error doesn’t really
exists.

Nonetheless, there is other suitable explanation. The robot measures
actual body angle, but the model assumes that this is an angle of a point in

25



center of the robot mass. Since the robot is not balanced, this particular point
has some angle offset from the body angle. Hence, the regulator compensates
for unbalanced robot body by adjusting body angle.

Finally, there is position map at figure 4.5, where you can see positioning
error. As was stated before, the robot oscilates back and forth, which intro-
duces errors in both X and Y directions. Thanks to encoder sensors inside
the motors we were able to reconstruct robot path on a 2D plane.

−5 0 5 10
0

0.5

1

1.5

2

2.5

3

X position (cm)

Y
 p

o
s
it
io

n
 (

c
m

)

XY Position

 

 

Start position: 0,0

End position: −1.63,2.005

Path of NXT

Figure 3.5: Stationary balancing - position offsets in time

The map shows the position offsets propagated in time. You can see, that
in the start there is one big swing. This is caused by clumsy operators who
did the test - we have had started the robot with biased body angle. As a
result, the regulator automatically corrected this error and the swing is its
by-product. When the robot finally stabilizes at [-6, 1.5] centimeters from
the starting point, it starts the stationary balancing to keep the upright
position. Please note that this is what the robot was supposed to do from
the beginning.

During the stationary balancing, the robot goes slowly sideways (around 3
centimeters per minute). We can see that on the position map. The question
is why - we are not clear on the reason, but we see several possibilities.

We can say for sure that left side of the robot is somewhat slower than
the right side. This shouldn’t happen, because the simulink model uses a

26



proportional regulator to compensate differences of the two motors revolution
during forward/backward movement (the regulator is turned off when wanted
rotational speed is not zero).

Let’s assume, for the moment, that the P regulator is not present. Then,
generally speaking, there can be two kinds of problems - left motor rotates
on the same velocity as the right one, but the tire slips, or the left motor
is just slower for the same PWM duty cycle. Please note that in stationary
balancing, there is no reason for the regulator to go sideways - the PWM
duty cycle is the same for both left and right motor.

The first type of problem (a slipping tire) is possible because of used
tires, they are really soft. It is just a piece of rubber, with no soul. As a
consequence, the robot body tends to incline to side in response to motor
acceleration (the rubber sags). This can cause the tire to slip and in con-
sequence the robot goes sideways. Generally speaking, the combination of
motor torque and relatively large body weight doesn’t allow the tires to slip
without sag even on slippery surface.

The second (and more probable) option states that the problem is some-
where in the left motor. First of all, the left motor have almost definitely
slightly different parameters then the right one. Most probably, the inner
friction and moment of inertia of left motor with its gearbox is higher than
on the other motor. As a consequence the motor gives lower torque.

Third, and also probable option, is that the PWM amplifier (“H” bridge
with 4 unipolar transistors) have larger resistance between source and drain,
which cause voltage losses in the control logic. Then there is lower voltage
for the motor and hence lower velocity around the axle.

There are inidices that the problem lies in control logic though. The
curve of stationary balancing seems like the motor is weaker when going
forward, than in the other direction. Both inner friction and moment of
inertia cannot cause that. The “H” bridge, on the other hand, can cause
this, because different pair of transistors is used to go forward and different
pair for going backwards.

We believe that the problem is combination of last two causes. Inner frici-
tion and moments of inertia are never the same for two motors. The same
holds for two transistors put together. To sum up, those inconsistencies prob-
ably cause the robot to go sideways. The problem is partially compensated
by the P controller, but it is well known that this kind of controller introduces
step error. Using PI controller could help to improve the drifts.

27



3.2 Impulse response

On the figure 4.6 we can see the scenario of this test case. At first, the
robot is doing now well known stationary balancing. The change comes 30
seconds after start when the robot starts his journey forward. He keeps doing
it for 7 seconds and then stops again. In other words, the wanted velocity
is zero from time 0 to 30 seconds and 37 to ∞ seconds. Between 30 to 37
seconds, the wanted velocity is maximum feasible. This forms an impulse in
the regulator input.

20 25 30 35 40 45 50
−50

0

50

100

150

Time (s)

D
is

ta
n
c
e
 (

c
m

)

Plot of Distance over time

 

 

Real data

Simulation data

Figure 3.6: Impulse response - distance from starting point

The slope of the impulse was not adjusted, it goes from zero to maximum
velocity immediately. On figure 4.7 we can see the response. The regulator
reacts in both simulated and real data with quickly rising edge, which causes
overshoot at first (specially in real data). Regulator then oscilates around
velocity of 20 cm/s.

20 25 30 35 40 45 50

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

V
e
lo

c
it
y
 (

c
m

/s
)

Plot of Velocity over time

 

 

Real data

Simulation data

Figure 3.7: Impulse response - velocity

28



It is not hard to notice that real robot tends to oscillate with quite large
amplitude around its mean velocity. It seem like combined efffect of soft tires
and of used regulator properties. Soft tires probably cause large overshoot in
the begining, because when the motor turns forward with significant torque,
both tires sag. Then, the large amplitude oscillation is caused by regulator
which tries to achieve two things at once - it wants to go forward, while
keeping the robot in upright position. The problem is, that for going forward,
the robot needs to incline a bit. As a consequence, those two effects fight
each other and cause this oscillation.

Solution for this problem is simple, though. We need to use regulator
which will take on input wanted body inclination. When we do this, the
robot then move forward and backward without oscillation as a consequence
of tracking wanted (non-zero) body angle. This solution is actually quite
elegant, but then we dont use wanted velocity as input, but wanted body
angle, which is, in a sense, nonsense. We do not know which angle will cause
the robot to move with wanted velocity, nor we do not know what is the
maximum feasible inclination So, we need at least some more calculation to
estimate the given angle for given velocity. (but this robot will not operate on
inclined surfaces). For really well working solution, we would need another
(wrapping) regulator with velocity feedback.

20 25 30 35 40 45 50
−20

−15

−10

−5

0

5

Time (s)

B
o
d
y
 a

n
g
le

 (
°

)

Plot of Body angle over time

 

 

Real data

Simulation data

Figure 3.8: Impulse response - Body angle

Next figure 4.8 depict body angle in real and simulated measurement. The
two states (stationary balancing versus movement forward) are clearly sepa-
rated. The body angle suffers with the same problem with oscillations as the
velocity. The reasons are already described in the paragraph above. Second
problem is, that real body angle measurement is biased. The reasons are the
same as for stationary balancing. Hence, more information on this can be
found in previous chapter.

Figure 4.9 show the real gyroscope measurement. We can see that when

29



20 25 30 35 40 45 50
−60

−40

−20

0

20

40

60

Time (s)

G
y
ro

 (
°

/s
)

Plot of Gyro over time

 

 

Gyro curve

Figure 3.9: Impulse response - gyroscopic measurement

real robot moves forward, gyroscope measurement is somewhat smoother,
there are no quick, large peaks to both directions. This is because body is
already inclined at some degree.

3.3 Running in circle

The last testcase makes the robot running in a meter wide circle. We chose
to design this test to measure accuracy of the robot directioning - in ideal
conditions, the robot would create exact circle.

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

Time (s)

V
e
lo

c
it
y
 (

c
m

/s
)

Plot of Velocity over time

 

 

Real data

Simulation data

Figure 3.10: Running in circle - velocity

We want to measure the deviation between the ends of full circle. The
circle is created simply by giving positive constant on the regulator inputs
θ̇ (translational velocity) and φ̇ (rotational velocity). The constants were
chosen to make approximately one meter wide circle (it is not very important
for our test, though). The travelling distance is then around 3 meters.

30



0 2 4 6 8 10 12 14 16 18 20
−60

−40

−20

0

20

40

60

Time (s)

G
y
ro

 (
°

/s
)

Plot of Gyro over time

 

 

Gyro curve

Figure 3.11: Running in circle - gyroscopic measurement

0 2 4 6 8 10 12 14 16 18 20
−6

−4

−2

0

2

4

Time (s)

B
o
d
y
 a

n
g
le

 (
°

)

Plot of Body angle over time

 

 

Real data

Simulation data

Figure 3.12: Running in circle - body angle

First three figures 4.10 4.12 4.11 show the measured velocity, body angle
and gyro output. There is one interesting thing to notice in all three figures
- all the curves exhibit some kind of oscillations. We could see with bare
eyes why, when commencing the test - the robot tend to swing from side
to side. This was a consequence of soft tire with no soul. When running
in a circle, more weight was put on outer wheel. That in combination with
velocity/inclination oscillations which the robot exhibited already during the
impulse response test caused the robot to sway in all four directions - forward,
backward, left and right.

That is why we were surprised by the results. The swing from side to side
didn’t affected the results seriously. They are more precise than expected.
When we look at figure 4.13 we can see that the robot kept the circle quite
precisely. There is deviation in the beginning, where the robot compensated
for start in inclined starting position (we could see that effect in all three
tests - it’s a consequence of starting in unprecise upright position). After
making a full circle, the robot was only a few centimeters on the left from its

31



original trajectory.

−50 0 50
−20

−10

0

10

20

30

40

50

60

70

80

X position (cm)

Y
 p

o
s
it
io

n
 (

c
m

)

XY Position

 

 

Start position: 0,0

End position: 35.81,50.92

Path of NXT

Figure 3.13: Running in circle - position

32



Bibliography

[1] Yorihisa Yamamoto “NXTway-GS Model-Based Design - Control of self-
balancing two-wheeled robot built with LEGO Mindstorms”. Applied Sys-
tems First Division, Cybernet Systems Co., LTD, Revision 1.4, May 2009

[2] Ryo Watanabe “Lego Mindstorms NXT”. Wasedda University
http://web.mac.com/ryo watanabe/iWeb/Ryo’s%20Holiday/NXTway-
G files/nxtway-g-1.pdf

[3] Takashi Chikamasa “Embeded Coder Robot NXT Instruction Manual”.
Revision 1.2, June 2008

[4] nxtOSEK/JSP “nxtOSEK Installation in Windows XP/Vista/7”.
http://lejos-osek.sourceforge.net/installation windows.htm

[5] GNU ARM “GNU ARM toolchain for Cygwin, Linux and MacOS”.
http://www.gnuarm.com/

[6] Takashi Chikamasa “Embedded Coder Robot
NXT Demo”. Matlab Central, March 1st 2012,
http://www.mathworks.com/matlabcentral/fileexchange/13399

[7] Corina Vinschen “Updated: Cygwin 1.7.15”. Cygwin, May 10th 2012,
http://cygwin.com/ml/cygwin-announce/2012-05/msg00019.html

[8] Lego Mindstorms “Drivers”. http://mindstorms.lego.com/Support/Updates/

[9] Bricx Command Center 3.3 “NXT firmware”.
http://bricxcc.sourceforge.net/lms arm jch.zip

[10] Bricx Command Center 3.3 “Programmable Brick Utilities: NeXTTool”.
http://bricxcc.sourceforge.net/utilities.html

[11] libusb-win32 “libusb-win32”. Geeknet, 2012,
http://sourceforge.net/apps/trac/libusb-win32/wiki

33



[12] Looney Mark (July 2010); “A simple calibration for MEMS gyroscopes”;
Analog Devices. Retrieved on June 10, 2012.
(available online at http://www.analog.com/static/imported-files/
tech articles/GyroCalibration EDN EU 7 2010.pdf)

34


