
Hidden Markov Models

for Machine Learning

Kubička Matěj

May 29, 2012

Abstract

This document describes what Hidden Markov Models (HMMs) are and
how they can be used in Machine Learning for partially supervised learn-
ing. This document was written and submitted as a student analysis for
the Machine Learning course given by professor Al-Ani Tarik at ESIEE
Engineering.

1 Introduction

A classical example of Hidden Markov model was Given by L. E. Baum and his
colleages at [2]. It is called The Urn and Ball model :

We assume that there are N (large) glass urns in a room. Within
each urn there is a large number of colored balls. The physical process
for obtaining observation is as follows. A genie is in the room, and
according to some random process, he (or she) chooses an initial urn.
From this urn, a ball is chosen at random, and its color is recorded
as the observation. The ball is placed back to the urn and a new urn
is selected randomly. Then the ball selection is repeated. Obviously,
this entire process generates a sequence of random colors.

We will see that this system can be modeled as simplest possible Hidden Markov
model, where each state correspond to chosen urn. Each urn has its own prob-
ability distribution function (shortly pdf) for the color of newly taken ball.

First of all, we will define statistical modelling framework of Markov sources.
Description of Markov Property, Markov Models, Markov Chains follows. Then
the Hidden Markov Model will be defined, together with common algorithms
used for their computation.

The second part of the paper discuss applications of Hidden Markov Models
in Machine Learning.

1

1.1 Markov property

Suppose we have some random process with finite number of states. For exam-
ple, to get back to Lamb’s urns, chosen urn is that state. There are N urns in
the room, and the genie chooses urns randomly one at a time. The resulting
sequence of chosen urns is a random sequence of states.

Markov property is a property of randomized sequences like the one with
urns. It is satisfied if conditional probability of future states depends only on
present state (and therefore not on previous states). As a consequence, Markov
property is memoryless and allows us to generate some kind of forecast for future
states based only on the current state.

1.2 Markov Model

Process of generating random sequence which satisfy Markov property is called
Markov Process. If this process is discrete in time, autonomous and fully ob-
servable, we use term Markov Chain. Good example of a simple Markov Chain
could be a coin tossing experiment, where Heads and Tails are two different
states and a sequence of repeated coin tossing is our Markov Chain.

I will borrow next example from [1]. Consider a system which may be in
one of 5 distinct states S1, S2, . . . S5 at any time. The system is required to
change state at every discrete time instant (possibly to the same state). The
system (outlined in figure below) is clearly a Markov Model. Full probabilistic
description of that system is given by probability of transition from any current
state to any new state. In other words, we need N ×N square matrix A, where
each element aij is probability of traversal from state i to state j.

This kind of probability matrix has to obey standard probabilistic constraints.

2

It means that following equalities and inequality on matrix A has to hold:

aij = P (Sj |Si)

0 ≤ aij ≤ 1∑
aij = 1

Additionally to matrix A, we need initialization vector π ∈ [1 × N] which de-
scribes probability of starting in i-th state (1 ≤ i ≤ N)

The system on figure above, described by some matrix A, is clearly a Markov
Model, since all its states are directly observable. This model generates sequence
of states according to the matrix A and the Markov property. The algorithm
for generating the Markov chain is as follows:

1. Choose initial state, set time t = 1

2. Choose next symbol, according to largrest traverse probability rule

3. Transit to a new state

4. Return to step 2 and repeat

This algorithm is rather simple, thanks to Markov property. She allows us to
forget past and choose next state only according to currently most probable
option. In next chapter, we will look at Markov models with little adjustment -
the states won’t be observable anymore. We will see that it complicates things
a bit, but also gives more realistic modelling properties.

2 Hidden Markov Model

When the states of the Markov Models are hidden and we cannot directly ob-
serve them, we decide to observe some other physical phenomenon, which gives
us information about the latent states. Of course, we cannot say for sure what
the hidden states are, but we can make a guess. This Markov Model is called
Hidden Markov Model to emphasize the hidden nature of its states.

In real-life problems, Markov Models seem to have only rarely observable
states. On the other hand, the certainty that observed state links to specific
hidden state can be quite high. That is typically consequence of some physical
constraints and the nature of the problem. (for example, some, but not all,
states can be observable, which narrows possible candidates for resulting hidden
states)

3

2.1 From Markov model to Hidden Markov model

Hidden Markov model is really just a extension of Markov Model. Observable
Markov model is described by number of states N , the transition matrix A and
by initialization vector π. Hidden Markov model is described by N , A and π
too, but additionally we need to deal with probabilistic mapping from observable
phenomenon to hidden (latent) states. There is no way to say for sure what is
the real hidden state, but we can make a guess by watching its consequences.
In order to properly define Hidden Markov model, we need following (naming
convention taken from [1]):

• Number of states N

• Number of observations M

• Traversal probability matrix A

• Emission probability matrix B

• Initial state π

• Final time T

Note: this text uses packed notation of Hidden Markov model: λ = (N,M,A,B, π)

Parameters N , A and π have the same meaning as before. New parameters M
and B constitute kind of a wrapper around original Markov model. At each time
instance, the Hidden Markov model is in one of N states and as a consequence
of being in that state, we observe one of M observable symbols. In other words,
Hidden Markov models are like doubly embedded probabilistic systems.

Lets define M observations as O1, O2, . . . OM . Element bij of matrix B de-
scribes probability that state Si is expressed by observation Oj :

bij = P (Oj |Si)

Obviously, same probabilistic constraints apply to matrix B as they apply to
matrix A. Size of B is M ×N .

In the beginning of this chapter was stated that Hidden Markov model is an
extension of the Markov model. It is simple to prove by showing that special
matrix B causes the Hidden Markov Model to become a Markov Model. Just
consider B to be unit matrix. Then for each hidden state we have one unique
observation. The hidden states are no longer hidden.

2.2 A note on usability

Biggest strength of Hidden Markov model is in Markov property. It is as-
sumed that the past do not affect the future. The decision is always based
only on present, not past. This simplifies things a lot and gives us a powerful

4

framework to model many real life problems. On the other side, using it to
model physical phenomena where Markov property doesn’t hold well leads to
misleading models. For example, if some model is in state where the largest
traversal probability from this state is back to the same state, the model get
stuck, infinitelly looping back. This de facto removes the random character of
the modelled process.

Rabiner in [1] identifies 3 fundamental problems which needs to be solved in
order to make Hidden Markov models usable in real-life applications:

1. What is the probability of observed sequence?

2. What is the (most probable) hidden state sequence, based on given obser-
vation?

3. How to adjust model parameters to maximaze probability of observed
sequence?

2.3 Calculating probability of observed sequence

Lets suppose we have model and we want to calculate probability of some ob-
served sequence. The straightforward approach is to use joint probability of
observed and hidden state sequences. The algorithm goes like this: we calcu-
late probability of every possible state sequence happening together with the
observed sequence. Then we sum those probabilities. It is simple enough and
this algorithm does the job correctly. Nonetheless, it is exponential in time -
the algorithm is not computationally feasible even for really small models. For
detailed description see [1].

A computationally feasible algorithm was discovered in 1980s. It is called
Forward procedure [3] [4] [1]. Lets suppose we have observed sequence E =
r1r2r3 . . . rT , where rt is observed symbol at time t and a state sequence Q =
q1q2q3 . . . qT . We define so called “forward variable” α as:

αt(i) = P (r1r2r3 . . . rt, qt = Si|λ)

Simply said, αt(i) is probability that for observed sequence r1r2r3 . . . rt, the
internal state at time t is Si. Notice that forward variable takes only part of
observed sequence. It is a sequence covering all steps until time t, it don’t go
further to the “end of time” T.

Having this forward variable αt(i) allows us to apply recursive dynamic
programming techniques. The algorithm is as follows:

1. Initialize α1(i) = πibi1

2. Calculate recursively αt+1(j) =
∑N

i=1 αt(i)aij until t = T

3. Repeat previous step for every i ∈ {1..N}

4. Finalize P (O|λ) =
∑N

i=1 αt(i)

5

The algorithm first calculates forward variable αt(i) for all the internal states
and then sums them together. This works only because there is only finite
number of states and thus all possible sequences remerge from those states
no matter the size of observation sequence. Asymptotic complexity of this
algorithm turns out to be O(N2T), which can be considered as polynomial
(cube) of the larger variable in the expression.

2.4 Calculating most likely sequence of states

Lets suppose we have following setup: an observed sequence E = r1r2 . . . rT
and Hidden Markov model λ = (N,M,A,B, π). Now, the question to answer is
what is the most likely sequence of hidden states S = q1q2 . . . qT .

What we do here is trying to find state sequence S which maximize proba-
bility of being cause of observation O. In other words, following:

arg max
S

P (S|O, λ)

The probability of P (S|O, λ) is the equivalent to joint probability of occurence
of S and O together, hence:

P (S|O, λ) = P (S,O|λ)

And so we can fully solve our problem by using following equation:

S∗ := arg max
S

P (S,O|λ)

We want some efficient algorithm to find the solution for this equation. The
naive approach would be to calculate the joint probability for all the possible
states, but that would be, once again, at least asymptotically exponential in
time. Luckily, there is more efficient approach called the Viterbi algorithm.

2.4.1 The Viterbi algorithm [5] [6] [1]

It is similiar approach like Forward algorithm described before. It uses incre-
mental construction of the most likely path.

Heart of the algorithm lies in recursive formula expressing maximum proba-
bility along a single path at time t. Lets suppose we have observation symbol k
given by observation rt. Then, based on this observation we can define following
recursion:

δt(j) = bjk · max
1≤i≤N

(δt−1(i)aij)

The δt(j) is the highest probability along a single path at time t, which accounts
for first t observations and ends in state j. The bjk is probability that observed
symbol k is a consequence of hidden state j. The max(δt−1(i)aij) selects path
which ends at time t − 1 in state i with maximum transition probability into
new state j.

6

The algorithm itself needs to initialize δ0(j) and then recursively calculate
partial results until final δT (j) is found. The problem is that this gives only
probability of most likely path. In order to retrieve inner state sequence, we
have to store state at every step into some data structure (like array).

For more details see [6], [5], or [1]. The algorithm has asymptotic complexity
O(N2T), like the Forward algorithm.

2.5 How to train Hidden Markov model

This is a complicated task - what we try to achieve is to change parameters
(N,M,A,B, π) of Hidden Markov model λ in order to maximize likelihood of
some input. There is a number of methods to do that.

Supervised learning with complete training data is easy - we can solve it an-
alytically. If we have training observation sequences and corresponding hidden
states available, then we can calculate probabilistic matrices A, B and initializa-
tion vector π (we suppose that M, N are known). Unfortunatelly, that is almost
never the case.

In case when we have only a set of labeled observation sequences, we have
to deploy somewhat more advanced learning techniques. There are several ap-
proaches - for example Maximum Likelihood [1], Viterbi learning, Expectation-
Maximization, or Simulated Annealing.

Viterbi training and Maximum Likelihood methods fits models to data by re-
estimating the model parameters to increase likelihood. The training goes until
the result starts to converge to proper identification. Note: For Viterbi training,
the result converge only if the system has adequate initialization vector.

Expected-Maximization (EM) method is designed to cooperate with some
“fuzzy”, unknown, prameters. It finds locally optimal parameters of the model
to maximize training data likelihood. It doesn’t try to decode the hidden state
sequence explicitely (unlike the Viterbi method). EM also critically depends on
initialization, because it only finds local maximum by re-estimating unknown
parameters (like Viterbi method).

3 Machine learning applications

Now, we have answer for the three fundamental questions: (1) given the model,
how likely is observed sequence. (2) given the model and observation sequence,
what is most likely the sequence of hidden states. (3) How can we adjust
parameters of the model to maximize likelihood of observed sequence.

It all boils down to machine learning method which takes advantage of Hid-
den Markov modelling capabilities. Lets suppose we have two systems, one is
real-life phenomenon and the second is it’s Hidden Markov model. Lets assume
that Markov property holds well enough for the real-life phenomenon and also
assume that the observations are statistically independent. Then we can train
our own model.

7

At first, we create a training data - a set of observed sequences. Additionally,
we label all the sequences with appropriate events (suppose we have K events).
For each label we create a Hidden Markov model λi (where i ∈ 1, . . . , k) and
train it with one of the methods listed above (Viterbi, Maximum likelihood,
EM, ..)

When we have trained the model, we can use it. There are two things to
do. Firstly, for any given observation sequence, decode the most likely sequence
of hidden states by using the Viterbi algorithm. Secondly, for any observation
sequence calculate “most likely” event by calculating:

λ∗i = arg max
1≤i≤K

P (O|λk)

The λ∗i is our detected event.

References

[1] Dr. Lawrence Rabiner, “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition”. Proceeding of the IEEE, Vol. 77, No.
2, Frebruary 1989

[2] L. E. Baum, T. Petrie, G. Soules, and N. Weiss “A maximization tech-
nique occuring in the statistical analysis of probabilistic functions of Markov
Chain”. Ann. Math. Stat., vol. 41, no. 1, pp. 164-171, 1970

[3] L. E. Baum and J. A. Egon, “An inequality with applications to statistical
estimation for probabilistic functions of a Markov process and to a model for
ecology”. Bull, Amer. Meteorol. Soc., vol. 73, pp. 360-363, 1967.

[4] L. E. Baum and G. R. Sell, “Growth functions for transformations on man-
ifolds”. Pac. J. Math., vol. 27, no. 2, pp. 211-227, 1968

[5] A. J. viterbi, “Error bounds for convolutional codes an asymptotically op-
timal decoding algorithm”. IEEE Trans. Informat. Theory, vol IT-13, pp.
260-269, Apr. 1967.

[6] G. D. Forney, “The Viterbi Algorithm”. Proc. IEEE, vol. 61, pp. 268-278,
Marc. 1973

8

