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1 Introduction

Our goal is to implement and optimise a series of image processing algorithms on a DSP development kit
TMS320DM6437. The result should produce real-time line detection mechanism on the image stream.
Firstly, we capture an image from the camera via the DSP and then we make it treatable by converting
it into a black and white image. Second, we use on the black and white image, the Deriche Filter (optimised
by Garcia-Lorca). The Deriche derivator uses the Robertson operator to get the gradients of the edges®.
Then we binarize the image by tresholding and apply a Hough transform. The Hough transform will give
a result on the hough plane, where the points with the maximum intensities will represent the lines that
are occurinng the most. For detection of the lines we use thresholding which is an effective technique put
in place to select the lines with highest votes. Once, we have extracted the relevant peaks on the hough

plane then we can map them back onto the image and get the lines.

| v

- Smoothing - # _Edge | g Image |y Line | Printing |
Camera detection binarization detection lines LCD

- - Tresholding Hough transform
Deriche filter

Figure 1: Image processing chain

Deriche operators have emerged for edge detection in many application areas in image processing and
in computer vision. Their main drawback is their slow performance due to the large volume of calculations
they require. However, their good results led to study different solutions to accelerate their performance.
One of the optimised version is the Garcia Lorca approximative Deriche algorithm. The Garcia Lorca
filter reduces the complex equations of the Deriche filter into two cascaded filters in causal and anti-causal
senses. The causal and anticausal equations are represented and explained in the proceeding chapters. As
a by-product of this implementation we get the gradients of the image in question. These gradients are
kept for later use.

Binarisation is simply an application of thresholding. We select an intensity value for the pixels.
Whatever is above this particular value is given the highest intensity, and whatever is below is given the
lowest intensity. This renders the image comparable to a zero or one format since there are only two pixel
values in question now, and hence the term binarisation. The binarisation is a necessary step because the
Hough transform acts on the binary images.

Hough’s transform is a method to represent all possible points on lines, as points. This is an application
of the fact that a line can be uniquely identified by two parameters, which make the x and y axes of the
hough space (called accumulator). If we map all the possible points (which implies all lines by extension)
into the Hough space then we would obtain an ordered space where each point would basically represent

a line from the original space. Once, we have the Hough accumulator we can extract and print? the lines.

IThese gradients will be used again while using the optimised version of the Hough transform
2How to print a line is explained in proceeding chapters.



1.1 Document organisation

Next chapter covers used hardware equipment, its parameters, performances and software tools used for
programmation, compilation, and profiling measurements. Chapter 3 contain information and analysis
of used algorithms. Chapters 4 and 5 cover a basic version of our processing chain - we deal with very
basic implementation of given image processing chain on a PC and on a DSP. In chapter 5 we try to
apply algorithm-architecture matching techniques to optimize performance of the basic implementation on
a DSP.

Finally, Chapter 6 aims to optimise used algorithms while keeping algorithm-architecture techniques.
Two versions are measured, they both share the same code, but one is without compiler optimizations and
one is with -O32 compiler optimizations.

In the last chapter we compare all versions, make conclusions and make some important remarks.

1.2 Measurement methodology

We have measured execution time of every used operator - Deriche smoother, Deriche derivator, Hough
transform and printing of the result. To get statistically relevant results, 10 measurements (xg...x9) were
done for each operator and average values were used for profiling (for calculation see Z in (1)). To transform
results from instruction cycles to seconds, we’ve noted CPU clock frequency as fopy = 594 - 106 Hz. From
average processing time in instruction cycles we can calculate processing time in miliseconds (equation

(2)) and in percent (equation (3)).

1 9
T = — . 1
v 10;% (1)

1 T
T[ms} = mePU (2)
T(%) = fc‘”’; ~ 100 (3)

Frames per second (FPS) indicates processing chain performance, how many images are processed
per second. We have calculated fps of whole system and fps of every and each operator. It is a purely
theoretical value which indicates algorithm performance. Operations per pixel (OPPX) indicates how
many clock cycles were necessary to compute value of a single pixel at the output. We have calculated it
again for whole system and for every operator separately. Gain was calculated as a ratio between operator
performance in previous and actual version. As in previous cases, we have measured gain between operators

separately and between two versions of the whole processing chain.

FPS = @ (4)
X

T
PPX = ——— 5
© 300 - 200 5)

30ptimization aiming processing speed and allowing increase of the program code.




TREF (6)

Gain =

To calculate performances of whole system (FPS, OPPX, CPU load), we had to measure processing
time outside our processing chain. We have measured total time between two frames (denoted as Tp) and
time required to process implemented processing chain (Tog). With Tog we can calculate system FPS
and OPPX. CPU load is calculated as a ratio between Teg and Tp, see equation (7). This indicator shows
how much CPU time in percent is used by the image processing chain itself.

CPUload = 2C1 100 (7)
Tp



2 Hardware & software resources

To fulfill the task, we have created a program running on x86 GPP (PC) which allowed us to quickly
design first version of the processing chain. We wrote a PC version and then merged our results together
to create a version running on a DSP.

Given DSP came with BIOS, a HAL called CSL (Chip-support library) and with demo-application
which sampled data from camera and sent them directly to the LCD screen. This allowed us to overstep
all the allocation, loading, storing and data transferring problems. Please note that the CSL uses dedicated

DMA channel to transfer between camera/LCD and external memory through one of the two EMIF’s* [3].

2.1 Development kit & environment

The application was tested on a development board TMX320DM6437 from TI. The manufacturer empha-

sizes following features [8]:

e 600-MHz C64x+ DaVinci CPU (4800 MIPS)

e One Video input via NTSC/PAL or RAW data

e One Video output via NTSC/PAL and YpbPr/RGB
e Audio I/0: S/PDIF Interface, analog, and optical

e PCI, 10/100 Ethernet MAC

e UART, CAN I/O, and VLYNQ

e 16 Mbytes of non-volatile Flash memory,

e 64 Mbytes NAND Flash, 2 Mbytes SRAM

e 128 Mbytes of DDR2 DRAM

As a development environment we have been provided with TT’s Code Composer Studio (in short CCS
or CCStudio) which is IDE with editor, compiler, programmer and debugger. The debugging was done
via USB, although there is on-board JTAG interface, but we haven’t used it.

2.2 TMS320C64x+ processor architecture

TMS320C64x+ is a 600Mhz (4800 MIPS peak) fixed-point DSP with VLIW [5] architecture and 256 bits
long instruction word. Single instruction word contain 8 fields for primitive instructions and therefore
capability to execute up to 8 instructions in PP. CPU consists from 32 fixed point GPR’s in two datapaths
(64 GPR’s in total) and eight functional units, each equipped with 6 ALU’s and two multipliers. Each of
the 8 functional units (.M1, .L1, .D1, .S1, .M2, .12, .D2, and .S2) is capable of executing one instruction

41t uses external memory interface A (EMIFA, on-chip DSP peripheral).
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Figure 2: TMX320DM6437 EVM DaVinci board

every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform
a set of arithmetic, logical, and branch functions. The .D units are designed to load /store data from/to
memory [3]. Every .M unit can perform 1 multiplication of two 32 bit words, or 2 multiplications of 16 bit

shorts, or 4 multiplications of two octets per clock cycle.

L1P Cache/SRAM

I}
¥

Program Memory Controller (PMC)

Unified :
L frikiied —-'ENM Instruction Fetch
Cache! [*T=] Controlier | SPLOOP Buffer
SRAM (umc)
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Instruction Decode
Data Path A Data Path B

I .L1].81].m1|.D1|||.DZ|.M2|.S2] L2

| Register File A | | Register File B |
External t I

Memory

Controller
(EMC)

Interrupt
—>1 Data Memory & Exception
Controller Controller

(DMC)

Power
Control

TTtitt1tt
IERERERR!

L1D Cache/SRAM |

Figure 3: TMS320C64x+ DSP Block Diagram (taken from [4])

2.3 Memories description

The DSP datasheet says on the topic of memories: The C64x+ core uses a two-level cache-based architec-
ture. The Level 1 Program memory/cache (L1P) consists of 32 KB memory space that can be configured
as mapped memory or direct mapped cache. The Level 1 Data memory/cache (L1D) consists of 80 KB
- 48 KB of which is mapped memory and 32 KB of which can be configured as mapped memory or 2-
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way set associated cache. The Level 2 memory/cache (L2) consists of a 128 KB memory space that is
shared between program and data space. L2 memory can be configured as mapped memory, cache, or a

combination of both. (taken from [3]).

CPU
Fetch Data
path path
256 2x64 bit
L1 program L1 data
L1P L1P L1D L1D Write
SRAM | | Cache SRAM | | Cache buffer
128 bit
256 bit 256 bit 256 bit
L2 unified data/program memory
L2 SRAM L2 cache
Addressable
memory
128/64/32 bit

Cache
memory
Data paths
managed External memory
by cache
controller

Figure 4: C64x+ Cache memory architecture

Access time to L1 cache and as well to L2 cache and RAM is 1 clock cycle. Both memories are SRAM
running on the same frequency as the CPU. For further information see [6]. External memory is DDR2®
connected through EMIFA peripheral of the DSP. Data are transferred with EDMA peripheral support.

Used DDR2 memory uses 166Mhz memory clock, so access times are at approximately 4x times higher

than in case of on-chip cache memories.

CPU requests
data

Move Data from

Is data in L2?

Is data in L1?

External to L2

Yes Yes

Send Data Move Data
to CPU from L2 to L1

Figure 5: Cache data flow (see [7])

5Type DDR2-667 by JEDEC
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2.4 Profiling techniques

For results analysis we have measured absolute CPU clock time between every operator. We always sample
10 consecutive frames and calculate average values per operator for analysis purposes. CSL library function

C64P _getltime() returns actual CPU clock time as 32 bit integer.

Listing 1: Time measurement approach

1 unsigned int profiling[50];

2 for (i=0; i<NO_ITERATIONS; i++) {

3 /* Load the image from camera =/
4

5

6 /* Apply processing chain =/

7 v=1%5;
8 profiling[5%v] = C64P_getltime();

9 deriche_gl(0.2);

10 profiling[5+v+1l] = C64P_getltime();
11 roberts (30);
12 profiling[5+v+2] = C64P_getltime();

13 hough_transform() ;
14 profiling[5%v+3] = C64P_getltime();

15 print_lines (150);

16 profiling[5+«v+4] = C64P_getltime();
17

18 /% Show the result on LCD screen x/
19

20 }
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3 Algorithms description & analysis

In this chapter we analyze performance of used algorithms. All used operators are evaluated: deriche
smoother, deriche derivator, tresholding for binarisation and a hough transform. The analysis is done for
calculative operations like additions and multiplications and therefore it is not an absolute measure of
algorithm running time. First of all, used architecture uses parallel processing, so number of instructions
does not equal to number of cycles. Additionaly, and more importanly, calculations do not involve program
flow control (loops, function calls, etc.) and memory accesses, which take most of the processing time. In

practice, running time of used algorithms is by several orders higher than calculated.

3.1 Deriche smoother

Frederico Garcia Lorca version of Deriche smoother is using 2"¢ order filter to smooth the image. We
smooth horizontally and vertically in causal and anticausal way®. Complete algorithm analysis can be

found at [9].

Listing 2: Deriche smoother

1 /+ Horizontal smoother =/

2 for(int i=0;i<height;i++) {

3 /* Causal way */

4 for (int k=2;k<width; k++) {

5 La[i]l[k] = glxImage[i][k] + g2xLali][k-1] - ggxLali][k-2];
6 }

7 /% Anti-causal way */

8 for (int k=width-3;k>=0;k--) {

9 Lb[i] [k] = gl#*La[i][k] + g2+Lb[i] [k+1] - gg+Lb[i] [k+2];
10 }

11}

12

13 /+x Transpose the image x/

14 transpose (Lb, width, height);

15

16 /+ Vertical smoother %/ /% Note: it is horizontal smoother on transposed image x/
17 for (int i=0;i<width;i++) {

18 /* Causal way =/

19 for (int k=2;k<height;k++) {

20 Lel[il [k] = glxLb[i][k] + g2+Lc[i][k-1] - gg+Lc[i] [k-21;
21 }

22 /* Anti-causal way */

23 for (int k=height-3;k>=0;k--) {

24 Ld[i][k] = gl*Lc[i][k] + g2*Ld[i][k+1] - gg*Ld[i][k+2];
25 }

26 }

27 /+ Transpose the image back */

28 transpose (Ld, width, height);

6In simple terms it means from left to right, from right to left, up to down and down to up.

14



For simplified version of horizontal smoothing implementation see listing above. Horizontal smoothing
is done in a way that we go through all the image lines and smooth them in causal way (by going from
left to right) and then in an anticausal way (by going from right to left). Vertical smoothing is done in the
same way, only the image matrix has to be transposed. There are 320 x 200 x 4 = 240, 000 loop iterations
in which we do 6 multiplications and 4 additions per pixel.

The horizontal smoothing accesses memory row-by-row, which provides better locality for cache memory
performance than column-by-column approach manifested in vertical smoothing without transposition.
The problem is the image transposition, we have to do it manually and therefore the problem with locality

is not solved.

3.2 Deriche derivator

For edge magnitude and gradient detection we use Roberts operator made of convolution of two core
matrices Ry and Ry (8) with the image. As a result we get two convoluted images Ny and Ny (9).
Core matrices are moved by 90 degrees between each other, Ry core matrix detects edges in horizontal
direction and the Ry in vertical direction. As a result, convoluted images Ny and Ny are moved by 90° to
each other too. Therefore the image gradient is a by-product of the edge detection mechanism - horizontal
matrix Ry provides X coordinate and vertical matrix Ry provides Y coordinate of the gradient. If we
calculate magnitude (10) we get resulting intensity of the edges. If we count argument (11) we get the

direction of the gradient.

=Y Rx(i,j)Isro(x +i,y +j) 9)

i=0 k=0
|E(z,y)| = v/Nu(2,y)? + Ny (2, y)? (10)
ZE(x,y) = arctan (JW) (11)

ANSI-C implementation is listed below. We have 6 additions per pixel and (height — 2)(width7 2) loop
iterations which makes about 350,000 operations for image of size 300 x 200 pixels. Please note that our
implementation of this algorithm is not creating new image matrices for both convolutions, but directly

counts magnitude (euclidian distance in 2D space) and the argument (an angle).

15



Listing 3: Deriche derivator - Roberts

1 #define gpx(x,y) m[x+(y)*width]

2 float grady[widthxheight], gradx[widthxheight]
3

4 voild roberts ()

5

6 int 3, k;

7 for (k=1; k<height-1;k++) /+ Lines «/

8 for (j=1; j<width-1;j++) { /* Columns =/

9 /* ROBERTS x/

10 gradx [J+kxwidth] = -gpx(Jj,k)-gpx (J+1,k)+gpx(J, k+1)+gpx (j+1,k+1);
11 grady [Jjt+k*width] = -gpx(Jj,k)+gpx(j+1,k)-gpx(j, k+1l)+gpx(j+1,k+1);

12 }

13 }

3.3 Thresholding & binarisation

This algorithm basically thresholds the image at some intensity level and says that every pixel below
threshold have lowest intensity (0) and every pixel above threshold have highest intensity (255). C language
implementation is listed below. We suppose that input image is resulting edge magnitude. This algorithm
contain no additions or multiplications, just comparation at each pixel on the image, 1 read access and 1

write access per pixel.

Listing 4: Image binarisation

1 void binarize (float * abs, float treshold)

2 |

3 int j, k;

4 for (k=0; k<height;k++) /* Lines =%/

5 for (j=0; j<width;j++) /+ Columns =/

6 abs[jtk+width] = (abs[Jj+kxwidth]>treshold)?255.0:0;

3.4 Hough transform

This algorithm is suposedly most exhaustive amongst all the ones in use here, because it has algorithmic
complexity of O(n?®). The other algorithms are quadratic (O(n?)). Hough trasnform takes every pixel of
binarised image and looks whether it is an active pixel (white pixel). If the pixel is white the algorithm
adds a vote to every possible line which goes through this pixel.

Votes are stored in the Hough accumulator space with two dimensions: p and ¢. The p is a distance

and ¢ is angle. In other words, Hough accumulator space is a space with polar coordinates. The transform

16



between polar and cartesian coordinates is given by:

z = pcos(¢) (12)
y = psin(6)

Therefore, Hough transform takes every white pixel and adds vote to every line with distance given by
p=x-cos(¢) +y-sin(¢) and with every possible angle (from 0 to 180). The algorithm in C language is
listed below. Please note that a - 7/180 in the Listing 5 is a conversion of angle a in degrees to radians.
This algorithm does two additions and two multiplications for 180 angles of each white pixel on the image.
Therefore, in worst case of completely white image we get 300 x 200 x 180 x 4 operations (43,200,000

operations for 300 x 200 pixels image).

Listing 5: Standard Hough transform algorithm

1 void hough () {

2 /+ run—-in-vars =/ int k,j,a; float rho;

3 /+ maximum distance %/ float maxrho = sqgrt (widthxwidth+height+height);
4 /x cleaning =/ for (k=0; k<360x180;k++) h[k] = 0;

5 /+ calculating accumulator space =*/

6 for (k=1; k<height;k++) /+ Lines «/

7 for (j=1; j<width; j++) /* Columns =/

8 if (Image[]j + kxwidth])

9 for (a=0;a<180;a++) { // Angles

10 rho = (Jj*xcos(a*xPI/180.0) + k*sin(axPI/180.0));
11 h[a+180+rho]++;

12 }

13}

3.5 Printing detected lines

We use linear algebra to find the line. First of all we convert the line described as pair of {p, ¢} into

following form:

Ay +dk=X
(14)
A, +dk=Y
where [A;, A,] is a known point on a line, (d,d,) is a direction vector and k is multiplication con-

stant. The known point can be retrieved simply from the hough accumulator space by transforming polar

coordinates in accumulator to cartesian coordinates on the picture.
A, = peos(9)
A, = psin(9)

To find a direction vector (d,, d,) we can take advantage of [A;, A,]. If we consider [A,, A,] coordinates

(15)

as a vector, we get a direction (A, A,), which is perpendicular to the line direction. To get the direction

17



vector, we just rotate the vector by 90° as it is done at (16). Resulting vector will have correct direction,
but unknown size. In order to be able to draw lines pixel by pixel with & simply incremented by 1, we

have to normalize the direction vector to have a size 1 (17).

(dey dy) = (= Ay, Ag) (16)

(de, dy)

dy,d,) =2 v)
(e dy) = g

(17)

With representation of a line in (14), we can look for an intersections with rectangle given by image
boundaries . When looking for intersection with a line we are trying to solve following system of linear

equations (18) to find ky and ko.

Az + digky = Asx + dogko
(18)
Ay + dlyk‘l = Ay + dgyk‘g

To get intersections with a rectangle, we have to test intersection with all 4 lines on all sides. We can
obtain following results: (note: we have decided to count number of intersections and print only lines with

2 intersections).
e 1 intersection when line is going through a corner
e 2 intersections between any two sides

e oo intersections for line overlapping with rectangle side

18



4 Basic implementation (version I)

This was a very first version we implemented, with no optimisation. The image processing chain was

designed and tested in synthetic environment on a PC and then ported to a DSP.

4.1 Features

e All operations in floating point (IEEE 754)

Classic version of Hough transform for lines detection

Used trigonometric functions from C standard library

Frederico Garcia Lorca version of Deriche filter

Roberts operator used for Deriche derivator

4.2 Basic implementation on PC

In order to speed-up development process we decided to setup a PC environment in which we can develop
our application. We have used a program for smoothing images given as a part of practicals related to a
cache memory and changed it in a way in which it loads an image, applies processing chain and stores the
result to a file. The program was written in C language, compiled with GCC. Profiling results are shown
in Table 1. Appendix A contain source codes of this program”.

To be able to run tests quickly, we wrote a script which compile the source code, run the program
and show the results. The script takes care about correctness of given arguments and also checks whether
compilation was successful. It allowed us to make development noticeably quicker.

We have also created a script for profiling. It uses gprof profiling tool to generate performance statistics.

Both scripts and profiling result are enclosed in Appendix A.

Function name ‘ Time [%)] ‘ Total time [s] ‘ Time/call [ms] ‘ Calls [-] ‘
deriche_gl 0 0.00 0.00 7
roberts 0 0 0 7
hough_lines_slow 93.75 0.15 21.43 7
print_lines 0 0 0 7
main 6.25 0.01 0.01 7

Table 1: PC version profiling results

The software was tested on a machine with Intel Core 2 Duo P8440 (2.26Ghz/3M L2 Cache) CPU
under OS Debian 6.0.2. Compiler optimizations were disabled. Results clearly shows that hough trasform
consumes most of the computing time, compared to other operations in the image processing chain.

Function main() takes about 6% of time, but that is not essential for the result.

7As well as profiling results and used shell scripts.
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c)

Figure 6: Example: (a) original image, (b) smoothed image, (c) binarized edges, (d) result

For the testing purposes our constants were set to 0.8 for the smoothing filter, edges were tresholded
at level 160 for binarisation and all lines in hough accumulator space with more than a 125 votes were

shown in the resulting image. For the result see Figure 6.

4.3 Basic implementation on DSP

The PC version was designed in a way that porting to a DSP is simple as possible, hence porting of our
source code to a C64 series DSP was quite straight-forward. Program for DSP was changed for a fixed-size
image (300px to 200px) and routines for loading/storing the image matrix were added. Image processing

chain was placed between these two routines.

4.4 Implementation notes

We are working with image of size 300 x 200 in grayscale (light intensities) and using a floating point
matrices (according to IEEE 754). All calculations are done in floating point, although our processor
doesn’t have hardware support for decimal numbers.

4.4.1 Basic version of Deriche smoother

Right from the beginning, we have run into troubles with implementing smoother of Garcia-Lorca version

of a Deriche filter. Our result kept being unstable. There were several reasons:

e We misused constants gamma and alpha. Gamma is equal to minus exponent of alpha, but we took

gamma directly as alpha

e There was a mistake in counting pixel values we put to the part of equation wrong operator (there

should have been minus, but we put a plus)
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e There were issues with storing data to correct matrices

Those mistakes accumulated overtime unknown algorithm proven to be problematic to identify. The

second issue also created a problem with float overflowing to +oc.

4.4.2 Roberts operator

Implementing a Roberts operator for edge detection and gradient value was quite straight-forward and
unproblematic. Only drawback was that we had to be careful to do the calculations correctly. Originally
we have interchanged Nx with Ny and although that haven’t changed result magnitude, the gradient

direction was different. Directly after edge extraction, we did a thresholding to binarize the image.

4.4.3 Hough transform

We have prepared accumulator space made of unsigned short datatype, because longest possible line on

our picture has 360 pixels, which is the maximum number of points which can vote for one line.

4.5 Performance analysis

Performance was evaluated using approach described in chapters 2.4 Profiling techniques and 1.2 Measure-
ment methodology. We are making 10 tests and use average values to calculate processing times, frames
per second (fps), operations per pixel (oppx). Memory usage and memory calls are evaluated from the

source code.

Function name | time [%)] | time [ms] fps oppx® | mem. usage’ | mem. accesses'’
Deriche smoother 6.75 164.99 6.06 1633.47 1.44MB 12rd + 4wr
Deriche derivator 3.30 80.68 12.39 798.81 480kB 8rd + lwr
Hough transform 89.29 2181.09 0.46 | 21592.79 369.6kB 1rd + 180wr
Printing result 0.13 3.19 312.63 31.66 369.6kB -

Table 2: Basic version profiling results

o Resulting values are average calculated out of 10 measurements

e Performance result for the alogrithm which prints the detected lines is highly dependent on actual

number of detected lines.

e Memory accesses of printing line algorithm cannot be evaluated, because it depends on actual length

of the line.

e Gains cannot be calculated, since this is a first version of our solution.

8Operations per pixel

9Memory usage refers to total amount of memory which is managed by the algorithm

10T heoretical value per pixel
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From the result analysis we can see that majority of processing time is taken by the Hough transform,
which slows down the system to 0.4 fps. Majority of memory is used by the Deriche filter, because it uses
4 additional image matrixes of floats for smoothing calculations. CPU is busy with the image processing

chain in absolute majority of time (99.47%).

Basic version
CPU load with different operators

B Deriche [7%)]
H Roberts [3%]
O Hough [89%]
B Printing [0.1%]
M Outside [1%]

Figure 7: Basic version - CPU load by different operators

Summary of basic version shows most important indicators of this version’s performance. It is resulting
fps, total CPU load created by implemented image processing chain, amount of operations per pixel (oppx)

and total memory usage.

Indicator Value
FPS 0.412
OPPX 24056

CPU load 99.47%
Mem. usage | 1569.6kB

Gain -

Table 3: Basic version summary

4.6 Conclusions

Good thing is that this version works. On other hand, there are many problems. Used hough algorithm
implementation takes just too much time to be used in real-life applications, big part of processing time
is taken by floating point calculations and the Deriche smoother uses ridiculous amount of memory for
smoothing.

There are many ways to optimize this version. Key to good performance is probably optimizing Hough
algorithm itself, then move the calculations from floating point to fixed point and also we should take

advantage of VLIW architecture and help compiler to be more effective.
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5 Algorithm-architecture matched version (version II)

5.1 Features
e Algorithm-architecture matching techniques.

e Optimization with loop unrolling, software pipelining, and register rotations applied to the algorithms

from basic version.

5.2 Hardware notions

From profiling results of the basic version we’ve seen that most of the procesing time is taken by the Hough
transform itself. This version doesn’t change any algorithm, but it optimizes previously used algorithms

to better utilize its hardware resources. The hardware solution uses following parameters [4]:
e Several multiplications can be done in one cycle (with hardware multiplier)
e Several additions can be done in one cycle
e Bit shift operation of arbitrary number of bits in one cycle (with barrel shifter)
e Floating point arithmetic is not supported (fixed-point CPU)
e Access to external memory is 6x slower than to internal SRAM with size of 128kB

e Thanks to parallel processing a simple operations (like incrementing a register) are executed often

with no cost, together with other instructions.

e The processor has hardware support to process up to 3 nested for loops with no overhead (with

SPLOOP)

DSP architecture is VLIW, which allows paralel processing of up to 8 instruction as was stated in
the introduction part. Problem is that effective usage of this feature is completely dependent on the C
compiler used. We can help the compiler a bit to find an optimal solution, but in the end a great deal of

the resulting performance depends on the compiler, not on the programmer.

5.3 Implementation notes

Note: because in the project description was requested to move from floating point calculations to fixed
point at the third version, this kind of optimisation is not used in here, although it belongs to the set of

algorithm-architecture matching techniques

5.3.1 Lowering memory usage of the Deriche smoother

Previous version required 4 additional float matrices in order to compute the smoothed image. Some type
of intermediate buffer is needed indeed, but 4 additional matrices makes the system slower just because of

the DMA transfers between L2 cache and the DDR2 external memory.
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As was described before, we have to smooth each line of the image in two directions: causal (left to
right) and anticausal (right to left). When we analyze what the algorithm actually does, we find out that
the intermediate buffer is required only for storing a line smoothed in one direction. So finally, we can take
line of the original image, smooth it in causal way, store the result to the line buffer and then we smooth
the line in anticausal way and store it back to the image.

In this way we managed to lower memory requirements from 960kB (4 float matrices 300 x 200 px) to

1200B (one line of floats).

5.3.2 Smart transpositions

The algorithm first does the horizontal smoothing, then transposes image matrix and finally does the
horizontal smoothing again (which technically becomes vertical smoothing). When we have the result, we
have to transpose image matrix for second time in order to get back original picture representation.

This optimization lies in reordering the smoothing algorithm so we need only one additional transpo-
sition. If we suppose that we get the source image matrix already transposed, we have to do the vertical
smoothing first, then transpose the matrix and then we can do horizontal smoothing. The transposition
is done only once. The optimization gain comes from the way in which the image matrix is loaded from
the camera driver: we can load it one way or another, but if we load it directly transposed, we save time

in the deriche smoother.

5.3.3 Optimizing memory accesses of the Deriche smoother

Deriche Garcia-Lorca smoother requires 12 read acesses to a memory and 4 write access in order to smooth
one pixel. With the register rotation we optimized the algorithm that it need only 4 read accesses and 4
write accesses.

In order to count pixel value we need to read last three consecutive pixels. The idea behind register
rotation is to store actual pixel and use it next loop iteration as previous pixel and loop after that as pixel

before previous pixel. For example implementation see listing below:

Listing 6: Deriche smoother register rotation

1 register int pl, p2, p3;

2 p3=iglx (mint2[ii++]); p2=(igl+mint2[ii++]+ig2x1[0]);
3 for (k=2;k<width; k++) {

4 pl = p2; p2 = p3;

5 p3 = (glx (mint2[ii++]) + g2*p2 gg*pl);

6 1[k] = p3;

5.3.4 Optimizing convolutions of the Deriche smoother

Robertson uses core matrices Ry and Ry and convolutes them with the source image. Result is used to

get a gradient vector and intensity of detected edge. Original computation is shown in Listing 7 (for more
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information see chapter 3.2 Deriche derivator).

Listing 7: Deriche derivator basic version

1 for(k=0; k<height-1;k++) // Lines

2 for (§=0; j<width-1;j++) { // Columns
3 gradx = —-in[jt+k*width]-in[j+l+kxwidth]+in[j+ (k+1)*width]+in[Jj+1+ (k+1) ~width];
4 grady = —in[j+k*width]l+in[j+1+kxwidth]-in[J+ (k+1)«width]+in[j+1+ (k+1) +«width];

There are 8 read memory accesses per each convolution. But pixels on address (j+1,k) and (41, k+1)
will be next loop iteration on address (4, k), and (j, k + 1) respectively. The idea is to use actual pixel next
loop iteration as a previous pixel without reading the memory. Altered algorithm is listed in Listing 8. It

requires only 2 read memory accesses:

Listing 8: Deriche derivator optimised version

1 for (k=0; k<height-1;k++) // Lines

2 for (3J=0; J<width-1;j++) { // Columns

3 p2 = mint[j+1l+kxwidth]; p3 = mint[j+1+ (k+1)*width];
4 convy = -pl+pd-p2+p3;

5 convx = -pl+p2-p4+p3;

6 pl = p2; p4 = p3;

5.3.5 Loop unrolling and software pipelining

Loop unrolling is a technique which lowers overhead generated by loop control. Then, it copies the content
of a loop several times into a single iteration. Software pipelining reduces overhead when next operation
depends on finishing of current operation. Instead of waiting to finish, software pipeline prepares solution
of the next iteration. This techniques are especially useful with VLIW architecture, which allows us to do
up to 8 operations together during the same clock cycle.

Compiler optimizes loops automatically, it calculates optimal way of loop unrolling and applies software
pipelining where possible. We can only help by describing minimum and maximum number of iterations
of the loop, for this we have pragma MUST ITERATE(min, max, step) [10]. For example see Listing 9

below.

Listing 9: Using of MUST_ITERATE pragma

1 #pragma MUST_ITERATE (width, width);

2 for (j=0; j<width-1;j++) { // Columns

3 p2 = mint[j+1l+kxwidth]; p3 = mint[j+1+ (k+1)*width];
4 convy = -pl+p4-p2+p3; convx = -pl+p2-p4d+p3;

5 pl = p2; p4d = p3;




We told the compiler additional information about loops where it was possible. Doing software pipelin-
ing to take advantage of PP in a C code is not possible, because C language was not designed to support
this feature, the compiler takes care of that. In order to apply both optimisation methods, compiler op-
timisation -O3 neds to be enabled. This optimisation (-O3) allows optimisation methods which make the

program code larger in order to make the algorithm running faster.

5.4 Performance analysis

Performance was evaluated using approach described in chapter 2.4 Profiling techniques and 1.2 Measure-
ment methodology. We made 10 tests and used average values to calculate processign times, frames per
second (fps), operations per pixel (oppx). Memory usage and memory calls are evaluated from the source

code.

Function name | time[%] | time[ms] fps oppx!! | mem. usage!? | mem. access'® | gain!
Deriche smoother 7.92 163.27 6.12 1616.40 481.2kB 4rd + 4wr 1.01
Deriche derivator 0.76 15.84 63.10 156.87 480.0kB 2rd + lwr 5.09
Hough transform 88.58 1825.94 0.54 18076.82 369.6kB 1rd + 180wr 1.19
Printing result 0.18 3.72 268.47 36.87 369.6kB - 0.86

Table 4: Profiling results of algorithm-architecture matched version

We can see that Hough transform keeps on being problematic, although performance was raised by 20%,
the algorithm is still incredibly slow, resulting in slowing down the system to almost the same perfomance
as in previous version.

Deriche smoother memory usage was lowered from 1.44MB to 1.2kB, which is improvement of more
than 1000 times. Unfortunately speed performance of this algorithm didn’t change much, only by 1%. We
account this result to floating point operations, which make every loop iteration heavy and hence loop
unrolling and software pipelining are not really effective.

Deriche derivator is 5.3 times faster than in previous version thanks to rotating registers. We lowered
memory accesses from 8 to 2 reads per pixel and also managed to keep other 6 pixels in the GPR register
bank, which made them quickly accessible.

Line printing mechanism seems to be bit slower than in the previous case, but it doesn’t matter. The
processing time varies greatly with the number of detected lines and therefore performance result depends

upon image processing chain settings and upon image picture properties.

1 Operations per pixel

12Memory usage refers to total amount of memory which is managed by the algorithm
13Theoretical value per pixel

14Computed with respect to previous version
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Algorithmrarchitecture matched version
CPU load with different operators

M Deriche [8%]
M Roberts [1%]
O Hough [90%]
M Printing [0.2%]
M Outside [0.6%]

Figure 8: Algorithm-architecture matched version - CPU load by different operators

Summary of basic version shows most important indicators of this version’s performance. It is resulting
fps, total CPU load created by implemented image processing chain, amount of operations per pixel (oppx)

and total memory usage.

Indicator Value
FPS 0.49
OPPX 19886

CPU load 97.45%
Mem. usage | 610.8kB

Speed gain 1.21

Table 5: Algorithm-architecture matched version summary

5.5 Conclusions

This version isn’t much quicker than it’s predecessor. We have managed to take advantage of DSP archi-
tecture and raised performance by 21%. ALthough it is a good result indeed, yet the problem is still the
Hough transform - the algorithm is too exhaustive.

We should note that the algorithm-architecture matching was not complete, because we haven’t moved
computations from floating point to fixed point. This thing is asked to be done for the next version. We
have big expectations, because it should allow the Deriche smoother optimizations (loop unrolling, software

pipelining) to be more effective.
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6 Algorithm-optimized version (version III)

In previous chapters we have seen that Hough transform algorithm is very exhaustive. We used floating
point calculations on a fixed point CPU. We calculated values of sin(¢) and cos(¢) functions manually

every call. This version optimizes all of that, changes algorithms and provides a real-time performance.

e Replace all floating point operations by fixed point

Implement O’Gorman and Clowes version of Hough transform [2]

Use LUT tables for trigonometric functions

Use DMA for sending the images to the LCD screen

e Measure execution times of all used operators, profile this version and compare it to previous versions

6.1 Implementation notes
6.1.1 Image matrix represented in fixed point

When changing implementation to run completely in fixed point, first we had to change the datatype of
image matrix from float (32 bit FP number) to integer format.

Our camera provides image in YUV color space [11]. Y component is color intensity called luminance,
UV components are chrominances responsible for color information. Our camera encodes pixel to 16 bit
number, where first 8 bit is Y component and next 2x4 bits are encoded as UV chrominance components.
Since for B&W image we need only Y component, our image matrix can be encoded as a matrix of 8 bit
unsigned integers.

By this conversion we have moved image matrix from floating point to fixed point, lowered memory
occupation 4 times to 60kB, which allowed to move image matrix from DDR2 memory to internal SRAM
(accessible part of L2 cache). Access to internal SRAM is approximately 4 times lower than external

memory, SRAM is running on 594Mhz (CPU clock), while used DDR2 works on 166 Mhz.

6.1.2 Deriche filter towards fixed point

The deriche filter uses decimal constants for smoothing calculations. To make the filter working with
unsigned char datatype, we had to manually convert result of floating point calculations to unsigned char.
Converting resulting floats to integers worked properly with performance around 5 fps.

Thanks to this change, the Deriche filter was able to cooperate with unsigned char matrix, but inside
it was still doing 12 multiplicatins and 8 summations per pixel in floating point calculated manually by
processor. The problem were used floating point constants which are decimals.

The key is to multiply the constants by large number (1000 for example) and make them integer. With
this approach we can store decimal number to up to three decimal places. For example number 1.2789 is
FP, 1.2789-10% = 1278.9 is FP too, but after converstion to integer it becomes 1278. We can see that first

three decimals are contained in the integer number. It is not a problem to do calculations all multiplied
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by 103, but drawback is that at some point we have to divide the result back. Division operation takes
large amount of time and it is desirable to find a way around it.

It was said in chapter 2 that our CPU has a barrel shifter, so it can do bit shifts of arbitrary size in
one clock cycle. It is also well known that bit shift to left by n places is the same as multiplication of the
integer number by 2". Bit shift to right by n places divides the number by 2" *. In other words, we can
multiply /divide in one clock cycle by 1, 2, 8, 16, 32, 64, 128, 256, 512, 1024 and so on..

In our solution we have precalculated floating point constants for smoothing and then multiplied them
by 1024 (equals to left bit shift by 10 places, 2! equals 1024). With the new constants we can do all the
calculations in fixed point. In the end, the results have to be bit-shifted by 10 places to right in order to

get proper results.

Listing 10: Converting floating point to a fixed point

1 float g = exp(-alpha);
2 int igl = ((l1-g)x(l-g))=*1024;
3 int ig2 = (2%g)*1024;

4 int igg = (gxg)*1024;

6 // New fixed point calculations

7 p3 = (iglx(matrix[ii++]) + 1g2+p2 - igg*pl)>>10;

With this new approach the Deriche smoother manifests a performance of 234 fps, which is 40 times

faster in comparison to it using the floating point calculations.

6.1.3 O’Gorman and Clowes version of Hough transform

The original version of Hough transform have O(n?®) complexity. O’Gorman and Clowes proposed opti-
misation technique which reduces complexity to O(n?) [2]. The idea lies in approximating line direction
from gradient information given by Deriche derivator. Instead of adding votes to all lines coming through
a white point, we add a vote only to a line which is coming through that point with direction tangential
to a gradient direction given by the Deriche derivator.

New algorithm fuses together Deriche derivator, binarisation and hough transform. For each point on
the image we apply Roberts operator (posing as Deriche derivator), calculate magnitude of the edge and if
it is above treshold, we add a vote to line in accumulator which is going through that point with direction

tagential to the gradient.

15We consider MSB first
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Listing 11: Optimized Hough transform implementation

1 void hough_lines (int treshold) ({
2 /+ Run—-in-vars x/ int k,j; float rho; int res, a;
3 /* gradients %/ int convy, convx; float conv ;

4 register int pl,p2,p3,p4;

6 #pragma MUST_ITERATE (360%x180, 360%x180, 1);

7 /* clean the accumulator x/ for (k=0; k<360%180;k++) h([k] = 0;
8 #pragma MUST_ITERATE (height, height);

9 for (k=0; k<height-1;k++) { // Lines

10 /* pre-load data to registers x/ pl = matrix[k*width]; p4 = matrix[ (k+1)~*width];
11 #pragma MUST_ITERATE (width, width);

12 for (j=0; j<width-1;3j++) { // Columns

13 /x load next column x/ p2 = mint[j+l+k+width]; p3 = mint[Jj+1+ (k+1)*width];
14 /x calculate gradients =/ convy = —-pl+p4-p2+p3; convx = -pl+p2-pd+p3;

15 /* rotate registers */ pl = p2; pd4d = p3;

16 /* binarisation =*/

17 if ((abs(convx) + abs(convy)) >= treshold) {

18 /* calculate grad angle %/ a = (int)atanf (convy/ (float)convx);

19 /* calculate point dist %/ rho = jxcos(a) + kxsin(a);

20 /% store to acc */ h[a+90+180x* (((int)rho+360)>>1)]1++;

21 }

22 }

23 }

Please note that we have used accumulator with ¢ from —90° to 90° with coordinates encoded as
¢ = array_index — 90. For example angle 0° degrees equal to column 90 in the accumulator space. This
is a new feature which was used because of the arctan() function. Arcus tangens is defined on interval

(=00, +00) and output range is (5F; &%) which is equivalent to (—90°, +90°)

6.1.4 Lookup tables instead of trigonometric functions

Trigonometric function sin(), cos() and arctan() from C standard library are calculating functions using a
Taylor series. Taylor series is generally complicated equation which requires time to be processed. With
calculative approach to trigonometric functions we can calculate result very precisely, disadvantage is time
required for the calculation. Aim of this optimisation technique is to pre-calculate resulting values for
appropriate argument interval and store the result to a lookup table (LUT).

Lookup table is an array which acts as a mapping of N* — R, where N7 is array index and R is the
trigonometric function result. To get the NT array index we need to do mapping of function input to array
index. For that we have to choose how many function values we want to have on how long input interval.

We are using Hough accumulator space with angle precision of 1° (in other words ¢ € Z at interval
[90°,90°]). This allows detected line angle precision of 1.7% at image size of 300 x 200 pixels. For full

calculations see explanation below - diagonal (longest) line have offset 6 pixels between it’s ends with
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maximum error of 1°. That makes 1.7% of the line length.

v/ 3002 4 2002 sin(1) = 360sin(1) = 6pz

6px
360px

(19)
=1.7%

This precision is considered as good enough for both Hough transform and LUT tables. Used lookup
table have to contain angles at interval [—90°,90°] for sin()/cos() and (—oo,+0o0) for arctan(). At this
point we can use advantage of sin() properties: it is an odd function. It means that sin(—¢) = —sin(¢).
Similiarly cos() is an even function and therefore cos(—¢) = cos(¢). With this knowledge we can redefine
argument interval for both sin() and cos() as [0°,90°] and only setup rules to set sign of the output
accordingly to the input. In case of sin() function the output has a same sign as an input. In case of cos()
function the output doesn’t change no matter positive or negative input. For used LUT implementation

example of sin() and cos() see Listing 12.

Listing 12: Used implementation of LUT tables in floating point

1 float cosT[91]; float sinT[91];

2 float test; int a;

4 /+ Initialize LUTs first x/

5 for(int 1i=0;1i<91;i++) {

6 /* 1 - number of degrees */
7 sinT[i] = sin(ix*PI/180.0);
8 cosT[i] = cos(i%xPI/180.0);

9 }
10 /* Now test it =/

11 a = 60; /% angle x/

12 test = ((a<0)?-1:1)*sinT[60]; /* test = sin(60 ) = 0.866 «/
13 test = cosT[abs(a)]; /* test = cos(60 ) = 0.5 %/

14

15 a = —60;

16 test = ((a<0)?2-1:1)*sinT[60]; /* test = sin(-60 ) = -0.866 */
17 test = cosTlabs(a)]l; /% test = cos(60 ) = 0.5 */

Creating a LUT table for arctan() function is more complicated, because function is defined on whole
R plane (—oo, +00). Additionally, the function changes dramatically functional values around zero. This
let to implementation which uses two LUT tables, one with small step (0.1 between two records in a table)
and high precision on interval from [—10, 10] and second with long step (10 between two records in a table).

In this way we can save memory while keeping high precision around zero input.

6.1.5 Using LUT tables in fixed point

At this point we have tried to solve already well known problem: FP operations. Functional values of all
used trigonometric functions are decimal values, but the processor itself do not have support for floating

point and hence it takes time to process them.
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To solve this problem we used the same principle as with Deriche smoother. We wanted to preserve at
least 4 decimal places to keep our calculations precise, so we decided to use bit shifting of 14 places which
multiplies functional values by more than 10%. As a consequence, the results of all calculations have to be

divided by 16384 (214).

Listing 13: Used implementation of LUT tables in fixed point

1 int cosT[91]; int sinT[91];

3 /* initialize LUTs x/

4 for(int 1=0;1i<91;i++) {

5 /* 1 - number of degrees */
6 sinT[1i] = sin(ixPI/180.0)<<14;
7 cosT[i] = cos(i*PI/180.0)<<14;

100 a = 60; /* angle «/

(100% ((a<0)?-1:1)*sinT[60])>>14; /% sinT[60] = 0.866%x16384 = 14188 «/

86 x/

11 test =

12 /* test = (14188%100)>>14 =

6.1.6 Utilizing DMA

We have decided not to utilize DMA channel. Our image matrix fits into DSP’s internal SRAM memory
and it’s encoding is different from representation in camera/LCD driver. Conversion needs to be done

anyway and therefore DMA utilisation is useless in our case.

6.2 Performance analysis

Performance was evaluated using approach described in chapter 2.4 Profiling techniques and 1.2 Measure-
ment methodology. We are making 10 tests and use average values to calculate processign times, frames
per second (fps), operations per pixel (oppx) and optimization gain. Memory usage and memory calls are

evaluated from the source code.

Function name | time [%)] | time [ms] | fps | oppx!® | mem. usage!” | mem. acc.!® | gain'’
Deriche smoother 23.72 18.97 52.70 187.85 241.2kB 4rd + 4wr 8.6
Deriche derivator

18.01 14.40 69.40 | 142.64 609.6kB 2rd + lwr 127.83
Hough Transform
Printing result 7.52 6.02 166.01 | 59.63 369.6kB - 0.62

Table 6: Profiling results of algorithm optimized version (without compiler help)

16Operations per pixel

"Memory usage refers to total amount of memory which is managed by the algorithm

18Theoretical value per pixel

19Computed with respect to previous version
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New version of Hough transform in combination with LUT tables and fixed point operations really

gave it a boost. Specially new algorithm for Hough transform fused with Deriche derivator is over hundred

times faster than it’s predecessors. It is a great result and the key to get real-time performance out of the

device. Algorithm manifests only 2 read accesses to count the gradient and 1 write access to give a vote

in the Hough accumulator.

Deriche smoother shows improvement by almost 9 times. Algorithm is the same, only thing which

changed is using of fixed point calculations and avoiding to division operations.

Printing lines shows

negative improvement, which is caused by image properties and by processing chain settings, as is explained

in previous chapters. Significant part (50.74%) of processing time is outside image processing chain - it

includes BIOS functions, transferring camera/screen?’ data and so on..

Function name | time [%] | time [ms] fps oppx'® | mem. usage'” | mem. acc.'® | gain'®
Deriche smoother 5.34 4.27 233.93 42.32 241.2kB 4rd + 4wr 4.44
Deriche derivator

13.51 10.81 92.52 106.99 609.6kB 2rd + lwr 1.38
Hough Transform
Printing result 7.01 5.60 178.35 55.50 369.6kB - 1.07

Table 7: Profiling results of algorithm optimized version (with compiler help)

From Table 7 we can see that compiler managed to increase performance significantly. Version without

compiler optimizations runs in real-time already, but this version reaches much further, almost to 50 fps.

We don’t know what compiler did to increase the performace, but now a majority of the processing time

is outside our processing chain, which suggest that we are close to performance limit.

(a) without compiler
optimizations

Algorithm-optimized version

CPU load with different operators

B Deriche [23%)]
B Hough [18%]

O Printing [7.5%]
M Outside [50%)]

(b) with compiler
optimizations (-O3)

B Deriche [5.3%]
B Hough [13.5%]
O Printing [7%]

W Outside [74%]

Figure 9: Algorithm-optimized version - CPU load by different operators

20Transfering data between peripherals and external memory is done by EDMA without CPU intervention.
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Following summary shows most important performance indicators of this version. It is resulting fps,
total CPU load created by image processing chain, amount of operations per pixel (oppx), memory usage

and optimization gain between two consecutive versions.

Indicator Value Optimized
FPS 25.37 48.33
OPPX 390 204
CPU load 49.25% 25.86%
Mem. usage 610.8kB 610.8kB
Speed gain 50.98 1.9

Table 8: Summary of optimized version

6.3 Conclusions

Because of better algorithms, lookup tables instead of trigonometric calculations and fixed point operations
we get more than real-time performance. Optimized version manifests almost 50 fps, which is twice the

real-time requirements. This results exceeds our expectations and satisfies our requirements.
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7 Conclusion

In a nutshell, we have created 3 versions where we applied algorithm and architecture related optimizations.
At the end we managed to get result running over 100 times faster than the basic version. There is
tremendous difference between first and last version performances. Hough transform got over 200 times
faster, Deriche smoother manifests almosts 40 times faster behaviour without changing the algorithm.
Deriche derivator got 4 times faster thanks to register rotation. See Table 9 for complete list of optimization
gains between first and last version. Please note that the term ”gain” refers to speed performance. To

complete description how values in Table 9 were calculated, see chapter 1.2 Measurement methodology.

Frames per second
Operator Gain
Basic version | Optimized version

Deriche smoother 6.06 233.93 38.6
Deriche derivator 12.39

92.53 209.27
Hough Transform 0.46
Printing result 312.64 178.36 0.57
System 0.41 48.33 117.45

Table 9: Optimization gain

The very first version was running on a PC and we haven’t really thought about optimization. Main
goal was to write a starting point: working solution which can be easily ported to a DSP. When we did
our first version on a DSP, the performance was so poor that the result was unusable in practice.

So, we decided to use the same algorithms and try to get advantage of the DSP capabilities. The
results was algorithm-architecture matched version, which was faster by over 20% while keeping original
algorithms and principles. Relatively speaking, it is a good result, but the performance was still quite
poor. Partially, also because we haven’t moved from floating point to fixed point with our calculations.

This was requested for the very last version.

Frames per second
different versions

Fully optimized version w th compiler help (48,33 fps) _
Algerithmrarchitecture matched version (0.50 fps) _
Basic version (0.41 fps) _

0,05 05 5 50
log(fps)

Figure 10: Compared FPS for different versions (on logarithmic scale)

35



The last version combines all optimization techniques known to us. Firstly, we have used O(n?)
algorithm for Hough transform. Secondly, all calculations were moved from floating point to a fixed
point and integer LUT tables replaced floating point trigonometric calculations. All together it created
version over 50 times faster than previous. Additionally, compiler optimizations were able to double speed

performance to almost 50 fps.

Personally, this project was a challenge for us. First of all used hardware equipment is very advanced.
This was a first time we have got around parallel processing on instruction level. Then this was a first
time we’ve been working on an embedded system related to image processing, which is for sure interesting
topic for both of us. We have learned many things from this project, it is not only new programming and
optimizing experience, we have also got around unexpected results - for example how big difference can
relatively small amount of floating point operations do on performance, or how effective register rotations

can be.
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8 Appendix A - Basic implementation on a PC

Listing 14: Used implementation of LUT tables in fixed point

1 /*****************************************************************************/
2 /» Simple test program to exercise/demonstrate some functionality of IMPACT.
3 *

4 x/

5 #include <stdio.h>

6 #include <sys/types.h>

7 #include <stdlib.h>

8 #include <stdint.h>

9 #include <float.h>

#include "mcimage.h"

11 #include "mccodimage.h"

-
o

13 #define FOR_EACH_PIXEL (inc, data) for(inc=0; inc<(image->row_sizeximage->col_size);inc++) {
data }

15 // it is a prototype, not a function

16 void processing(float ximage, // (IN) Matrix with source image
17 float xresult, // (OUT) Matrix with resulting image

18 unsigned int width, // (IN) Image width

19 unsigned int height, // (IN) Image height

20 int argc, char xargvl[]);

22 // DO NOT MESS WITH THIS !!!
23 void store_me_fimage (char xfilename, float xm, int width, int height)

24 {
25 struct xvimage xresult; int i, max = 0;
26 result = allocimage (filename, height,width,1,1);

28 for (i=0; i< (heightxwidth); i++)
29 if (max<+ (m+i)) max== (m+i);

31 for (i=0; i< (height*width); i++)

32 result->imagedatal[i]=(unsigned char) (((* (m+i)) /max) *«255);
33

34 writeimage (result, filename);

35 freeimage (result);

36 }

37

38 // DO NOT MESS WITH THIS !!!
39 int main (int argc, char xargv([])

40 {

41 // define image structure - PINK library

42 struct xvimage * image; struct xvimage * result;

43 float *fimage; float xfresult; int i; float max = 0;

44

45 // read image PGM - ASCII

46 image = readimage (argv[l]); // lecture d’une image au format PGM !
47

48 if (image == NULL)

49 {

50 fprintf (stderr, "addconst: readimage failed\n");

51 exit (0);

52 }

53

54 // result image allocation

55 result = allocimage ("result", image->row_size,image->col_size,1,1);
56

57 // allocate float matrixes

58 fimage = malloc(sizeof (float)*image->row_sizeximage—->col_size);

59 fresult = malloc(sizeof (float) *image->row_sizeximage->col_size);
60

61 // do the image processing with float matrices and progressive image colordepth

62 FOR_EACH_PIXEL (i, { x(fimage+i)=(float)image->imagedatalil; })

63 processing (fimage, fresult, image->row_size, image->col_size, argc, argv);

64 FOR_EACH_PIXEL (i, { if (max<x (fresult+i)) max=«* (fresult+i); })

65 FOR_EACH_PIXEL (i, { result->imagedata[i]=(unsigned char) (((* (fresult+i))/max)*255); })

67 // write result image
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68 writeimage (result, argv([2]);

69 freeimage (image);
70 return (0);

71

72}

Listing 15: project.c - image processing chain implementation

1 #include <math.h>

2 #include <stdlib.h>

3

4

5 #define gpx(x,y) m[x+(y)+*width]

6 #define ADDR(in, x,y) in[(x) + (y)»*m]

7 #define make_me_fimage (p, width, height) p = malloc(sizeof (float)*width+height)
8

9 #ifndef PI

10 #define PI 3.14159265

11 #endif

12

13 extern void store_me_fimage (char xfilename, float sm, int width, int height);
14

15

16 void deriche_gl (float xId, float =xIc, float a, int m, int n) {
17

18 float ga = exp(-a);

19 float gb = 1-ga;

20 float gl = (l-a)*(l-a);

21 float g2 = 2xa;

22 float gg = g=a;

23

24 int 1i,3;

25 float Ir[mxn];

26

27 // Horizontal filtering

28 for(i = 0; 1 < n; i++) {

29 // Filter causal

30 ADDR (Ic,0,1) = ADDR(Id,0,1);

31 ADDR(Ic,1,1i) = ADDR(Id,1,1);

32

33 for(j = 2; j < m; j++) |

34 ADDR (Ic, j,i) = (glxADDR(Id, j,1i)+g2+ADDR(Ic,j-1,1)+gg*ADDR(Ic, j-2,1))/2;
35 }

36

37 // Filter anticausal

38 ADDR(Ir,m-1,1i) = ADDR(Id,m-1,1i);

39 ADDR (Ir,m-2,1i) = ADDR(Id,m-2,1i);

40

41 for(j = m-3; j >= 0 ; j——) {

42 ADDR (Ir, j,i) = (gl*ADDR(Ic, j,1)+(g2+ADDR(Ir, j+1,1))+ (gg*ADDR(Ir,j+2,1)))/2;
43 }

44 }

45

46
a7 // Vertical filtering

48 for(i = 0; i < m; i++) {

49 // Filter causal

50 ADDR(Ic,1,0) = ADDR(Ir,1i,0);

51 ADDR(Ic,i,1) = ADDR(Ir,i,1);

52

53 for(j = 2; j < n; j++) |

54 ADDR (Ic,i,3J) = (glxADDR(Ir,i, J)+(g2*ADDR(Ic,i, j-1))+ (gg*ADDR(Ic,i,J-2)))/2;
55 }

56

57 // Filter anticausal

58 ADDR(Ir,i,n-1) = ADDR(Ic,i,n-1);

59 ADDR(Ir,i,n-2) = ADDR(Ic,i,n-2);

60

61 for(j = n-3; j >=0; j——) {

62 ADDR(Ir,1i,j) = (gl*ADDR(Ic,i,j)+(g2«ADDR(Ir,i, j+1))+ (gg*ADDR(Ir,i, j+2)))/2;
63 }

64 }
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65
66
67
68
69
70
71
72
73
T4
75
76

7

920
91
92
93
94

95
96
97

99
100
101

102

104
105
106
107
108
109

111

112
113
114
115

117

118

119

120

122
123

void roberts (float *m, float *mout, float treshold, unsigned int width, unsigned int height)
{
float convy, convx; int j, k;
for (k=0; k<height-1;k++) // Lines
for (§=0; j<width-1;3j++) { // Columns

//ROBERTSON

convx = —gpx(J,k)-gpx (j+1,k)+gpx (J, k+1) +gpx (J+1,k+1);

convy = —gpx(J,k)+gpx(j+1,k)-gpx(Jj, k+1)+gpx (j+1,k+1);

//SOBEL

//convy = —gpx(Jj-1,k-1)-2+gpx(j,k-1)-gpx(j+1,k-1)+gpx (J-1,k+1)+2+gpx(Jj, k+1)+gpx (j+1,k
+1);

//convx = —gpx(j-1,k-1)-2%gpx (j-1,k)-gpx(j-1,k+1)+gpx (j+1,k-1)+2+gpx (j+1, k) +gpx (j+1,k
+1);

if (convy<0) convy = —-convy; if (convx<0) convx = -convx; // abs. val. done manually

mout [ j+kxwidth] = (convy+convx >= treshold) ? 255 : 0;

float * hough_lines_slow(float #*m, unsigned int width, unsigned int height) {
/* Run—-in-vars =/ int k,Jj, a; float rho; int mrho = (int)sqgrt (width+width + height+height)

r
/* Make the image */ float »h = malloc(sizeof (float)*mrho*180);
for (k=1; k<height-1;k++) // Lines
for (j=1; j<width-1;j++) // Columns
if(m[j + k*width]) for(a=0;a<180;a++) { // Angles
rho = (j*cos(axPI/180.0) + k*sin(axPI/180.0));
if (rho) h[a+180x* (((int)rho+mrho) /2) ]1++; }
return h;

void print_line(float =*m, float intensity, int x1, int yl, int x2, int y2, unsigned int
width, unsigned int height)
{
int i; int d = (int)sqgrt ((x2-x1)=*(x2-x1)+(y2-yl)*(y2-yl)); /* line size x/
float ax=(x2-x1)/(float)d, ay=(y2-yl)/(float)d; /* direction vectors »*/
for (i=0; i<d; i++) /% print pixel %/ m[(xl+(int) (ax*1))+(yl+(int) (ay*1i))*width] =
intensity;

void print_lines (floatsm, float xh, unsigned int treshold, unsigned int width, unsigned int
height)
{
int j,k, x[2], y[2], hct; int mrho = (int)sqgrt (widthxwidth + heightxheight);
int sx=0, sy=0, ex=sx+width, ey=sy+height, isl_x, is2_y, is3_x, is4d_y;
float x1, yl1l, ax, ay, rho;

for (k=0; k<mrho;k++) { rho = k*2-mrho;

for (3J=0; 7J<180; j++) if (h[j+180%k] > treshold) { hct = 0;
x1 = rhoxcos (j*PI/180.0); yl = rho*xsin(j*«PI/180.0); /+ get a point on line «*/
ax = yl/(float)j; ay = -x1/(float)j; /+ get direction vector */

isl_x = xl-sx+(sy-yl)=*ax/ay; 1s2_y = yl-sy+(ex-x1l)~*ay/ax; /+» calculate intersections
x/
is3_x = xl-sx+(ey-yl)*ax/ay; isd_y = yl-sy+(sx—-x1l)~*ay/ax;
if ((isl_x>=sx)&& (isl_x<ex)) { x[hct]l=isl_x; ylhct++]=sy; } /+ find hits */
1f ((is3_x>=sx)&& (is3_x<ex)) { x[hct]=is3_x; yl[hct++]=ey; }
1f((is2_y>=sy)&&(is2_y<ey)) { x[hct]l=ex; ylhct++]=is2_y; }
( ( {

1f((is4_y>=sy)&& (isd_y<ey)) x[hct]=sx; ylhct++]=isd_y; }
if (hct==2) print_line(m, 255, x[0]-sx, y[0]-sy, x[1l]-sx, y[l]l-sy, width, height); /* print
*/
}
}
}
void processing(float =m, // (IN) Matrix with source image

float *mout, // (OUT) Matrix with resulting image
unsigned int width, // (IN) Image width

unsigned int height, // (IN) Image height

int argc, char xargvl])

float xh; float dercf, edgecf, trshcf; int j;
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131 sscanf (argv[3], "%f", &dercf);

132 sscanf (argv[4], "%f", &edgecf);
133 sscanf (argv[5], "%f", &trshcf);
134

135 deriche_gl (m, mout, dercf , width, height);

136 store_me_fimage ("deriche.pgm", mout, height, width);

137 roberts (mout, mout, edgecf, width, height);

138 store_me_fimage ("robertson.pgm", mout, height, width)

139 h = hough_lines_slow(mout, mout, edgecf, width, height);;

140 store_me_fimage ("hough.pgm", h, sqgrt(width*width+theightxheight), 180);
141 print_lines (mout, h, trshcf, width, height);

Listing 16: testme.sh - script used to speedup development process

1 1if [ $%# = 5 1; then

2 rm hough.pgm deriche.pgm robertson.pgm

3 gcc —-g —-1lm main.c mcimage.c project.c -o r.out

4 if [ $? = 0 ]; then

5 ./r.out $1 $2 $3 $4 S5

6 display $1 deriche.pgm robertson.pgm hough.pgm $2
7 fi

8 else

9

echo "usage ./testme imgin.pgm imgout.pgm deriche_coef edge_binarisation_coef
tresholding_coef"

10 fi
Listing 17: profile-prj.sh - script used to profile program performance

rm a.out
rm gmon.out

gcc -pg —-1lm main.c mcimage.c project.c -o a.out

./a.out test.pgm test2.pgm 0.8 160 120

© 0 N e G oA W N e

rm gmon.sum
10 mv gmon.out gmon.sum

12 gprof -s a.out gmon.out gmon.sum
13 ./a.out test.pgm test2.pgm 0.8 160 120
14 gprof —-s a.out gmon.out gmon.sum
15 ./a.out test.pgm test2.pgm 0.8 160 120
16 gprof —-s a.out gmon.out gmon.sum
17 ./a.out test.pgm test2.pgm 0.8 160 120
18 gprof —-s a.out gmon.out gmon.sum
19 ./a.out test.pgm test2.pgm 0.8 160 120
20 gprof -s a.out gmon.out gmon.sum
21 ./a.out test.pgm test2.pgm 0.8 160 120
22 gprof -s a.out gmon.out gmon.sum
23 ./a.out test.pgm test2.pgm 0.8 160 120
24 gprof —-s a.out gmon.out gmon.sum

26 gprof a.out gmon.sum > $1

Listing 18: result-prof.txt - profiling results

1 Flat profile:

2

3 Each sample counts as 0.01 seconds.

4 % cumulative self self total

5 time seconds seconds calls ms/call ms/call name

6 93.75 0.15 0.15 7 21.43 21.43 hough_lines_slow
7 6.25 0.16 0.01 main

8 0.00 0.16 0.00 154 0.00 0.00 print_line

9 0.00 0.16 0.00 35 0.00 0.00 allocimage
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10 0.00 0.16 0.00 28 0.00 0.00 freeimage

11 0.00 0.16 0.00 28 0.00 0.00 writeimage

12 0.00 0.16 0.00 28 0.00 0.00 writerawimage
13 0.00 0.16 0.00 21 0.00 0.00 store_me_fimage
14 0.00 0.16 0.00 7 0.00 0.00 deriche_gl

15 0.00 0.16 0.00 7 0.00 0.00 print_lines
16 0.00 0.16 0.00 7 0.00 21.43 processing

17 0.00 0.16 0.00 7 0.00 0.00 readimage

18 0.00 0.16 0.00 7 0.00 0.00 roberts

19

20 % the percentage of the total running time of the

21 time program used by this function.

23 cumulative a running sum of the number of seconds accounted

24 seconds for by this function and those listed above it.

25

26 self the number of seconds accounted for by this

27 seconds function alone. This is the major sort for this
28 listing.

29

30 calls the number of times this function was invoked, if
31 this function is profiled, else blank.

32

33 self the average number of milliseconds spent in this
34 ms/call function per call, if this function is profiled,
35 else blank.

36

37 total the average number of milliseconds spent in this
38 ms/call function and its descendents per call, if this

39 function is profiled, else blank.

40

41 name the name of the function. This is the minor sort
42 for this listing. The index shows the location of
43 the function in the gprof listing. If the index is

44 in parenthesis it shows where it would appear in

45 the gprof listing if it were to be printed.

46

a7 Call graph (explanation follows)

48

49

50 granularity: each sample hit covers 4 byte(s) for 6.25% of 0.16 seconds
51

52 index % time self children called name

53 <spontaneous>

54 [1] 100.0 0.01 0.15 main [1]

55 0.00 0.15 7/7 processing [3]

56 0.00 0.00 7/28 freeimage [6]

57 0.00 0.00 7/28 writeimage [7]

58 0.00 0.00 7/35 allocimage [5]

59 0.00 0.00 7/7 readimage [12]

60 —mm

61 0.15 0.00 7/7 processing [3]

62 [2] 93.8 0.15 0.00 7 hough_lines_slow [2]

63 —m

64 0.00 0.15 7/7 main [1]

65 [3] 93.8 0.00 0.15 7 processing [3]

66 0.15 0.00 7/7 hough_lines_slow [2]
67 0.00 0.00 21/21 store_me_fimage [9]
68 0.00 0.00 7/7 print_lines [11]

69 0.00 0.00 7/7 roberts [13]

70 0.00 0.00 7/7 deriche_gl [10]

T

72 0.00 0.00 154/154 print_lines [11]

73 [4] 0.0 0.00 0.00 154 print_line [4]

T4 e

75 0.00 0.00 7/35 main [1]

76 0.00 0.00 7/35 readimage [12]

77 0.00 0.00 21/35 store_me_fimage [9]
78 [5] 0.0 0.00 0.00 35 allocimage [5]

T

80 0.00 0.00 7/28 main [1]

81 0.00 0.00 21/28 store_me_fimage [9]
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82 [6] 0.0 0.00 0.00 28 freeimage [6]

84 0.00 0.00 7/28 main [1]

85 0.00 0.00 21/28 store_me_fimage [9]
86 [7] 0.0 0.00 0.00 28 writeimage [7]

87 0.00 0.00 28/28 writerawimage [8]
88 T T

89 0.00 0.00 28/28 writeimage [7]
90 [8] 0.0 0.00 0.00 28 writerawimage [8]
9] ——

92 0.00 0.00 21/21 processing [3]
93 [9] 0.0 0.00 0.00 21 store_me_fimage [9]
94 0.00 0.00 21/28 freeimage [6]
95 0.00 0.00 21/28 writeimage [7]
96 0.00 0.00 21/35 allocimage [5]
97—

98 0.00 0.00 7/7 processing [3]
990 [10] 0.0 0.00 0.00 7 deriche_gl [10]

100 ——————m

101 0.00 0.00 7/7 processing [3]
102 [11] 0.0 0.00 0.00 7 print_lines [11]
103 0.00 0.00 154/154 print_line [4]
104 ——— = m

105 0.00 0.00 7/7 main [1]

106 [12] 0.0 0.00 0.00 7 readimage [12]

107 0.00 0.00 7/35 allocimage [5]
108 — e

109 0.00 0.00 7/ processing [3]
110 [13] 0.0 0.00 0.00 7 roberts [13]

111 — === —

112

113 This table describes the call tree of the program, and was sorted by
114 the total amount of time spent in each function and its children.

116 Each entry in this table consists of several lines. The line with the
117 index number at the left hand margin lists the current function.

118 The lines above it list the functions that called this function,

119 and the lines below it list the functions this one called.

120 This line lists:

121 index A unique number given to each element of the table.
122 Index numbers are sorted numerically.

123 The index number is printed next to every function name so

124 it is easier to look up where the function in the table.

125

126 % time This is the percentage of the ‘total’ time that was spent
127 in this function and its children. ©Note that due to

128 different viewpoints, functions excluded by options, etc,

129 these numbers will NOT add up to 100%.

130

131 self This is the total amount of time spent in this function.
132

133 children This is the total amount of time propagated into this
134 function by its children.

135

136 called This is the number of times the function was called.
137 If the function called itself recursively, the number

138 only includes non-recursive calls, and is followed by

139 a “+’ and the number of recursive calls.

140

141 name The name of the current function. The index number is
142 printed after it. If the function is a member of a

143 cycle, the cycle number is printed between the

144 function’s name and the index number.

145

146

147 For the function’s parents, the fields have the following meanings:

149 self This is the amount of time that was propagated directly
150 from the function into this parent.

151

152 children This is the amount of time that was propagated from
153 the function’s children into this parent.
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155 called This is the number of times this parent called the

156 function '/’ the total number of times the function

157 was called. Recursive calls to the function are not

158 included in the number after the ‘/’.

159

160 name This is the name of the parent. The parent’s index
161 number is printed after it. If the parent is a

162 member of a cycle, the cycle number is printed between
163 the name and the index number.

164

165 If the parents of the function cannot be determined, the word
166 ‘<spontaneous>’ is printed in the ‘name’ field, and all the other
167 fields are blank.

169 For the function’s children, the fields have the following meanings:

171 self This is the amount of time that was propagated directly
172 from the child into the function.

173

174 children This is the amount of time that was propagated from the
175 child’s children to the function.

176

177 called This is the number of times the function called

178 this child ‘/’ the total number of times the child

179 was called. Recursive calls by the child are not

180 listed in the number after the ‘/'.

181

182 name This is the name of the child. The child’s index

183 number is printed after it. If the child is a

184 member of a cycle, the cycle number is printed

185 between the name and the index number.

187 If there are any cycles (circles) in the call graph, there is an

188 entry for the cycle-as-a-whole. This entry shows who called the

189 cycle (as parents) and the members of the cycle (as children.)

190 The '+’ recursive calls entry shows the number of function calls that
191 were internal to the cycle, and the calls entry for each member shows,
192 for that member, how many times it was called from other members of
193 the cycle.

194

196 Index by function name
197

198 [5] allocimage [4] print_line [9] store_me_fimage
199 [10] deriche_gl [11] print_lines [7] writeimage

200 [6] freeimage [3] processing [8] writerawimage
201 [2] hough_lines_slow [12] readimage

202 [1] main [13] roberts
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9 Appendix B - Basic implementation on a DSP

Listing 19: Basic implementation on a DSP

/[ x*

Completely naive version of implementing given image processing chain.

1
2

3

4 Authors: Divij Babbar, Kubicka Matej (I4-IMC)
5 Date: 1/6/2012

6 Version: Naive

7
8

Properties:
P
10 sin() LUT NOT USED
11 cos () LUT NOT USED
12 atan() LUT NOT USED
13 hough version STANDARD
14 matrix datatype FLOAT
15 loop unrolling NOT USED
16
17 %/

19 #include <std.h>
20 #include <gio.h>
21 #include <log.h>
22 #include <math.h>

24 #include "psp_vpfe.h"
25 #include "psp_vpbe.h"
26 #include "fvid.h"

28 #include "psp_tvp5146_extVidDecoder.h"

30 #include <soc.h>
31 #include <cslr_ccdc.h>

33 #include <soc.h>
34 #include <cslr_sysctl.h>

37 //pour logger ce qui se passe avec log.h (voir DSPBIOS)
38 extern LOG_Obj trace; // BIOS LOG object

41 /* extrait de 1’exemple EDMA3

42 // 48K L1 SRAM [0x10f04000, 0x10£f10000), OxcO00 length

43 // 32K L1 Dcache [0x10£f10000, 0x10£f18000), 0x8000 length

44 // 128K L2 SRAM [0x10800000, 0x10820000), 0x20000 length

45 // 128M DDR2 [0x80000000, 0x88000000), 0x8000000 length are cacheable

48 #define width 300

49 #define height 200

50 #define ADDR (in, x,y) in[(x) + (y)=*width]
51 #define gpx(x,y) m[x+(y)*width]

53 #ifndef PI
54 #define PI 3.14159265
55 #endif

57 #define NO_OF_BUFFERS (2u)
58 #define width 300
59 #define height 200

61 // Global Variable Defined
62 static PSP_VPSSSurfaceParams *ccdcAllocFB[NO_OF_BUFFERS]={NULL};
63 static PSP_VPSSSurfaceParams *vidAllocFB[NO_OF_BUFFERS] ={NULL};

65 static FVID_Handle ccdcHandle;

66 static FVID_Handle vidOHandle;
67 static FVID_Handle vencHandle;
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69 static PSP_VPFE_TVP5146_ConfigParams tvp5l46Params = {

70
71
72
73
74
75

92
93
94
95
96
97
98
99
100
101
102
103
104
105

107
108
109
110
111
112

114

116

141

TRUE, // enable656Sync

PSP_VPFE_TVP5146_FORMAT_COMPOSITE,
PSP_VPFE_TVP5146_MODE_AUTO

bi

// format
// mode

static PSP_VPFECcdcConfigParams ccdcParams = {

PSP_VPFE_CCDC_YCBCR_8,
PSP_VPSS_FRAME_MODE,
480,

720,

(720 *2),

0,

Ol

NULL,

{

// dataFlow
ffMode

// height

width

// pitch

// horzStartPix
vertStartPix
// appCallback

// extVD Fxn

PSP_VPFE_TVP5146_Open,
PSP_VPFE_TVP5146_Close,
PSP_VPFE_TVP5146_Control,

by
0

bi

static PSP_VPBEOsdConfigParams

PSP_VPSS_FRAME_MODE,
PSP_VPSS_BITS16,
//PSP_VPBE_RGB_888,

PSP_VPBE_YCbCr422,

(720 %= (16/8u)),

Ol

0/

720,

480,

Or
PSP_VPBE_ZOOM_IDENTITY,
PSP_VPBE_ZOOM_IDENTITY,
PSP_VPBE_EXP_IDENTITY,
PSP_VPBE_EXP_IDENTITY,
NULL

//segld

vidOParams = {
// ffmode
// bitsPerPixel

//ajout TG

// colorFormat
pitch
leftMargin
topMargin
width

// height
segld
hScaling
vScaling
hExpansion
vExpansion
appCallback

bi

static PSP_VPBEVencConfigParams vencParams

= {

PSP_VPBE_DISPLAY_NTSC_INTERLACED_COMPOSITE // Display Standard

bi

#pragma DATA_SECTION (m, ".ExtBuffer")
float m[widthxheight];
#pragma DATA_SECTION (m2, ".ExtBuffer")
float m2[widthxheight];
#pragma DATA_SECTION (h, ".ExtBuffer™)

short h[360%180];

unsigned int profiling[50];

void robertson (float treshold)
{

float convy, convx; int j, k;

for (k=0; k<height-1;k++) // Lines
for (§=0; j<width-1;3++) { // Columns
//ROBERTSON

convx = —gpx(J,k)-gpx(j+1,k)+gpx(j, k+1)+gpx (j+1,k+1);
convy = —gpx(J,k)+gpx (j+1,k)-gpx (j, k+1l)+gpx (j+1,k+1);
if (convy<0) convy = —-convy; if (convx<0) convx = —-convx; // abs. val.
m2 [ j+k*width] = (convy+convx >= treshold) ? 255 : 0;
}

}

void transpose(float *in, float »out, int w, int h)

46
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142
143
144
145
146
147
148
149
150

151

153
154
155
156
157
158
159
160
161
162
163
164

198

200
201
202

203
204
205

207
208
209
210
211
212

int

n,m, s=0;

for (n=0; n<h;n

for (m=0;

}

float
float
float
float
float

out [mx

1[width];

++)

h+n]

m<w; m++)

= in[s++];

la[width+height];
1b[widthxheight];
lc[widthxheight];
ld[widthxheight];

void deriche_gl (float g)

{

float gl
float g2
float gg

int 1i,4ii

for(i =

= (1-9)x(1-9);
= 2xg;
= g*g;

K

0 ;

i < width ;

ii=ixheight;

i++){ // lines

la[ii+0]=gl*m2[ii];
la[ii+1]=(gl*m2[1]+g2x1la[ii+0]);
for (k=2; k<height;k++) {

la[ii+k] =

(gl*m2 [ii+k]

lb[iit+height-1]=la[iitheight-1];
1lb[ii+height-2]=la[iit+height-2];
for (k=height-3;k>=0;k——) {

}

1b[ii+k] =

(glxla[iitk]

transpose (lb, lc, height,

for(i =

0

i < height

ii=ixwidth;
1d[1i+0]=gl*x1c[ii+0];
1d[ii+1]=(glxlc[1ii+1]+g2x1d[1i+0]);
for (k=2;k<width; k++) {

1d[ii+k] =

’

(glslc[ii+k]

width)

’

i++){ // lines

m[ii+width-1]1=1d[ii+width-1];
m[ii+width-2]=1d[ii+width-2];

for (k=width-3;k>=0;k——) {

m[ii+k] = (gl*x1d[ii+k] + g2xm[ii

void print_line(float intensity,

{

int

float ax=(x2-x1)/(float)d,

i; int d =

for (1=0; i<d;

intensity;

(int) sgrt ((x2-x1) * (x2-x1)+(y2-y1l) x (y2-y1l));
ay=(y2-yl)/ (float)d; /=*

i++)

int x1,

/* print pixel =/

int y1, int

void print_lines_slow(unsigned int treshold)

{
int
int

ik, x[21,
sx=0, sy=0

float x1, vy1,

y[2], hct;
, ex=sx+width,

ax,

ay, rho;

ey=sy+theight, isl_x,

for (k=0; k<360;k++) { rho = k*2-360;
for (j=0; 3<180; j++)
if(h[j+180xk] > treshold)

{
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+ g2xla[ii+k-1]

+ g2x1b[ii+k+1]

+ g2%1d[ii+k-1]

+k+1]

- gg*xm[ii+k+2]);

x2, int y2)

direction vectors =/
m[ (x1+ (int) (ax*i))+(yl+(int) (ay*i)) ~width]

is2_y,

is3_x,

- ggxla[ii+k-2]);

— gg*lb[ii+k+2]);

- ggxld[ii+k-21);

/* line size =/

isd_y;



227

229

231
232
233
234
235
236

238
239
240
241
242
243

245
246
247
248
249

251
252
253
254
255
256

258
259
260
261
262
263

265
266
267
268
269
270

272
273
274
275
276
277

279
280
281
282
283
284

hct = 0;
x1 = rhoxcos (j*PI/180.0); yl = rho*sin(j*PI/180.0); /% get a point on line «/
ax = yl/(float)j; ay = -xl1/(float)j; /» get direction vector =/
isl_x = xl-sx+(sy-yl)xax/ay; 1s2_y = yl-sy+(ex-x1)~*ay/ax; /* calculate
intersections =%/
is3_x = xl-sx+(ey-yl)+*ax/ay; 1isd_y = yl-sy+(sx-x1)~*ay/ax;
if ((isl_x>=sx)&& (isl_x<ex
)) { x[hct]l=isl_x; ylhct++]=sy; } /+ find hits x/
if ((is3_x>=sx)&& (1is3_x<ex)) { xlhct]l=is3_x; ylhct++]=ey; }
1f((is2_y>=sy)&&(is2_y<ey)) { xlhctl=ex; ylhct++]l=1is2_y; }
if ((is4_y>=sy) && (is4d_y<ey)) { xlhctl]l=sx; ylhct++]=isd_y; }
if (hct==2) print_line (255, x[0]-sx, y[0]l-sy, x[l]l-sx, y[ll-sy); /* print =/
}
}
}
void hough_lines_slow() {
/* Run-in-vars =/ int k,j, a; float rho;
for (k=0; k<360+180;k++)
h{k] = 0;
for (k=1; k<height;k++) // Lines
for (j=1; j<width;j++) // Columns
if (m2[j + k*width]) for(a=0;a<180;a++) { // Angles
rho = (j*cos(a*PI/180.0) + k*sin(axPI/180.0));
//rho = (JjxcosT[a] + k*sinT[al);
if (rho) hl[a+180x (((int)rho+360)/2)]1++; }
}
void start_boucle () {

PSP_VPBEChannelParams beinitParams;
PSP_VPFEChannelParams feinitParams;
GIO_Attrs gioAttrs = GIO_ATTRS;
PSP_VPSSSurfaceParams xFBAddr = NULL;
PSP_VPSSSurfaceParams *FBAddrOut = NULL;
int i,v = 0;

Uint32 j = 0;

Uint32 k = 0;

//Init CSL du DMA
edma3init () ;

// Create ccdc channel
feinitParams.id = PSP_VPFE_CCDC;
feinitParams.params = (PSP_VPFECcdcConfigParams«)&ccdcParams;
ccdcHandle = FVID_create( "/VPFEO", IOM_INOUT, NULL, &feinitParams,
&gioAttrs);
if ( NULL == ccdcHandle) {
return;

// Configure the TVP5146 video decoder
if( FVID_control ( ccdcHandle,
VPFE_ExtVD_BASE + PSP_VPSS_EXT_VIDEO_DECODER_CONFIG,
&tvpbSl46Params) != IOM_COMPLETED ) {
return;
} else {
for ( 1i=0; i < NO_OF_BUFFERS; i++ ) {
if ( IOM_COMPLETED == FVID_alloc( ccdcHandle, &ccdcAllocFBI[i] ) ) {
if ( IOM_COMPLETED != FVID_qgueue (ccdcHandle, ccdcAllocFB[i] ) ) {
return;

// Create video channel

beinitParams.id = PSP_VPBE_VIDEO_O;

beinitParams.params = (PSP_VPBEOsdConfigParamsx*)&vidOParams;

vidOHandle = FVID_create( "/VPBEO", IOM_INOUT,NULL, &beinitParams,
&gioAttrs );

if ( NULL == vidOHandle ) {
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286 return;

287 } else {

288 for ( i=0; i<NO_OF_BUFFERS; i++ ) {

289 if ( IOM_COMPLETED == FVID_alloc( vidOHandle, &vidAllocFBI[i] ) ) {
290 if ( IOM_COMPLETED != FVID_queue( vidOHandle, vidAllocFBI[i]) ) {
291 return;

292 }

293 }

294 }

295 }

296

297 // Create venc channel

298 beinitParams.id = PSP_VPBE_VENC;

299 beinitParams.params = (PSP_VPBEVencConfigParams x)&vencParams;

300 vencHandle = FVID_create( "/VPBEO", IOM_INOUT, NULL, &beinitParams,

301 &gioAttrs);

302 if ( NULL == vencHandle ) {

303 return;

304 }

305

306 //Allocation memoire et la structure qui contiendra 1’image

307 FVID_alloc( ccdcHandle, &FBAddr );
308 FVID_alloc( ccdcHandle, &FBAddrOut );

309

310

311 // BOUCLE ACQUISITION & COPIE & AFFICHAGE DESIMAGES

312 // 1)Acquisition

313 for( 1 = 0; i < 10000; i++ ) {

314

315 // Load image

316 if ( IOM_COMPLETED != FVID_exchange( ccdcHandle, &FBAddr ) ) {

317 return;

318 }

319

320

321 v = 1%10;

322

323 // Make the Y matrix transposed

324 for (k=0; k<height;k++) // Lines

325 for (j=0; j<width;j++) // Columns

326 m2 [k+jxheight] = (float) (x ((unsigned char *)FBAddr->frameBufferPtr + (Jjx2 + kx2%720)*2
+ 1));

327

328

329 // integer

330 profiling[5*v] = C64P_getltime();

331 deriche_gl(0.2);
332 profiling[5*v+1]
333 robertson (30) ;
334 profiling[5*v+2] =
335 hough_lines_slow () ;
336 profiling[5+«v+3] = C64P_getltime();
337 print_lines_slow(150);

338 profiling[5+v+4] = C64P_getltime();

C64P_getltime () ;

C64P_getltime () ;

339

340 // Print the Y matrix

341 for (k=0; k<height;k++) // Lines

342 for (j=0; j<width;j++) { // Columns

343 * ((unsigned char «*)FBAddrOut->frameBufferPtr + (j + kx720)*2) = 128;

344 * ((unsigned char *)FBAddrOut->frameBufferPtr + (j + k%x720)%2 + 1) = (unsigned char)m[]
+width=*k];

345 }

346

347 LOG_printf ( &trace, " Affichage iteration = %u", i );

348

349 // Print changed image

350 if ( IOM_COMPLETED != FVID_exchange( vidOHandle, &FBAddrOut) ) {

351 return;

352 }

353 }

354 // === FIN BOUCLE ACQUISITION & COPIE & AFFICHAGE DESIMAGES

355 FVID_free(vidOHandle, FBAddr);
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356
357
358

360
361
362
363
364
365

367
368
369
370

FVID_free (ccdcHandle, FBAddrOut);

// Free Memory Buffers

for( i=0; i< NO_OF_BUFFERS; i++ ) {
FVID_free( ccdcHandle, ccdcAllocFB[i]
FVID_free( vidOHandle, vidAllocFBI[i]

// Delete Channels

FVID_delete( ccdcHandle );
FVID_delete( vidOHandle );
FVID_delete( vencHandle );

return;

)i
)i
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10 Appendix C - Algorithm-architecture matched version

Listing 20: Algorithm-architecture matched version

/[ x*

Algorithm-architecture matched version of given image processing chain.

1
2

3

4 Authors: Divij Babbar, Kubicka Matej (I4-IMC)
5 Date: 1/6/2012

6 Version: algorithm-architecture matched

7 %/

8
9

#include <std.h>
10 #include <gio.h>
11 #include <log.h>
12 #include <math.h>

14 #include "psp_vpfe.h"
15 #include "psp_vpbe.h"
16 #include "fvid.h"

18 #include "psp_tvp5146_extVidDecoder.h"

20 #include <soc.h>
21 #include <cslr_ccdc.h>

23 #include <soc.h>
24 #include <cslr_sysctl.h>

27 //pour logger ce quil se passe avec log.h (voir DSPBIOS)
28 extern LOG_Obj trace; // BIOS LOG object

31 /+ extrait de 1’exemple EDMA3

32 // 48K L1 SRAM [0x10£f04000, 0x10£10000), 0xc000 length

33 // 32K L1 Dcache [0x10£f10000, 0x10£f18000), 0x8000 length

34 // 128K L2 SRAM [0x10800000, 0x10820000), 0x20000 length

35 // 128M DDR2 [0x80000000, 0x88000000), 0x8000000 length are cacheable
36 */

39 #define ADDR (in, x,y) in[(x) + (y)=*width]
40 #define absM(v) (v<0)?(-v): (V)

42 fifndef PI
43 #define PI 3.14159265
44 ffendif

46 #define NO_OF_BUFFERS (2u)
47 #define width 300
48 #define height 200

51 // Global Variable Defined
52 static PSP_VPSSSurfaceParams *ccdcAllocFB[NO_OF_BUFFERS]={NULL};
53 static PSP_VPSSSurfaceParams *vidAllocFB[NO_OF_BUFFERS] ={NULL};

55 static FVID_Handle ccdcHandle;
56 static FVID_Handle vidOHandle;
57 static FVID_Handle vencHandle;

59 static PSP_VPFE_TVP5146_ConfigParams tvp5l46Params = {
60 TRUE, // enable656Sync

61 PSP_VPFE_TVP5146_FORMAT_COMPOSITE, // format

62 PSP_VPFE_TVP5146_MODE_AUTO // mode

63 };

65 static PSP_VPFECcdcConfigParams ccdcParams = {
66 PSP_VPFE_CCDC_YCBCR_8, // dataFlow

67 PSP_VPSS_FRAME_MODE, // ffMode

68 480, // height
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69 720, // width

70 (720 *2), // pitch

71 0, // horzStartPix
72 0, // vertStartPix
73 NULL, // appCallback
74 {

75 PSP_VPFE_TVP5146_Open, // extVD Fxn
76 PSP_VPFE_TVP5146_Close,

77 PSP_VPFE_TVP5146_Control,

78 }y

79 0 //segld

80 };

82 static PSP_VPBEOsdConfigParams vidOParams = {

83 PSP_VPSS_FRAME_MODE, // ffmode

84 PSP_VPSS_BITS16, // bitsPerPixel
85 //PSP_VPBE_RGB_888, //ajout TG

86 PSP_VPBE_YCbCr422, // colorFormat
87 (720 * (16/8u)), // pitch

88 0, // leftMargin
89 0, // topMargin
90 720, // width

91 480, // height

92 0, // segld

93 PSP_VPBE_ZOOM_IDENTITY, // hScaling

94 PSP_VPBE_ZOOM_IDENTITY, // vScaling

95 PSP_VPBE_EXP_IDENTITY, // hExpansion
96 PSP_VPBE_EXP_IDENTITY, // vExpansion
97 NULL // appCallback
98 };

99

100 static PSP_VPBEVencConfigParams vencParams = ({

101 PSP_VPBE_DISPLAY_NTSC_INTERLACED_COMPOSITE // Display Standard
102 };

104 #pragma DATA_SECTION (mint, ".ExtBuffer")
105 float mint [300%x200];

106 #pragma DATA_SECTION (mint2, ".ExtBuffer")
107 float mint2[300%200];

108 #pragma DATA_SECTION (h, ".ExtBuffer")

109 short h[360%180];

110

111 unsigned int profiling[50];

112

113 float sinT[360];

114 float cosT[360];

115 float arctanT([4000];

116

117 #pragma DATA_SECTION (1, ".L2Buffer")

118 float 1[width];

120 void transpose(float xin, float =xout, int w, int h)
121 |

122 int n,m,s=0;

123 for (n=0; n<h;n++)

124 for (m=0; m<w;m++)

125 out [mxh+n] = in[s++];
126 }

128 void deriche2 (float g)

129 {

130 float igl = ((1-9)*(1-9));
131 float ig2 = (2%9);

132 float igg = (gxg);

133

134 int 1i,1ii,k;

135 float pl, p2, p3;

137 #pragma MUST_ITERATE (width, width);

138 for(i = 0 ; 1 < width ; i++){ // lines
139 ii=ixheight;

140 p3=iglx (mint2[ii++]1);

141 p2=(igl*mint2 [ii++]+ig2*1[0]);
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142 1[0]1=p3; 1[1]1=p2;

143 #pragma MUST_ITERATE (198, 198,1);

144 for (k=2;k<height;k++) {

145

146 pl = p2;

147 p2 = p3;

148 p3 = (iglx(mint2[ii++]) + ig2*(p2) - iggx*(pl));
149 1[k] = p3;

150 }

151

152 mint2[ii--]1=p3;

153 mint2[ii--]1=p2;

154 #pragma MUST_ITERATE (198, 198,1);

155 for (k=height-3;k>=0;k—-) {

156 pl = p2;

157 P2 = p3;

158 p3 = (iglx(1l[k]) + 1g2%(p2) - igg=*(pl));
159 mint2[ii--] = (unsigned char)p3;
160 }

161 }

162

163 transpose (mint2, mint, height, width);
164

165 #pragma MUST_ITERATE (height, height);
166 for(i = 0 ; i < height ; i++){ // lines

167 ii=ixwidth;

168

169 p3=(igl*mint [ii++]);

170 p2=(igl*mint [1i++]+1g2x1[0]);

171 1[0]1=p3; 1l[1l]1=p2;

172 #pragma MUST_ITERATE (298, 298,1);

173 for (k=2;k<width; k++) {

174 pl = p2;

175 p2 = p3;

176 p3 = (iglx (mint[ii++]) + ig2*(p2) - igg*(pl));
177 1[k] = p3;

178 }

179

180 mint [1i--]1=p3;

181 mint [1i--]1=p2;

182 #pragma MUST_ITERATE (298, 298,1);

183 for (k=width-3;k>=0;k—) {

184 pl = p2;

185 p2 = p3;

186 p3 = (iglx(1[k]) + 1g2x(p2) - iggx(pl));
187 mint[ii--] = (unsigned char) p3;

188 }

189 }

190 }

191

192 void print_line(float intensity, int x1, int y1l, int x2, int y2)
193 |

194 int i; int d = (int)sqgrt ((x2-x1)* (x2-x1)+(y2-y1)*(y2-y1l)); /» line size =/
195 float ax=(x2-x1)/(float)d, ay=(y2-yl)/(float)d; /* direction vectors =/
196 for (i=0; i<d; i++) /% print pixel %/ mint[(xl+(int) (ax*1))+(yl+(int) (ay*1i))*width] =

intensity;
197 }
198
199 void print_lines (unsigned int treshold)
200 {

201 int 3, jk,k, x[2], y[2], hct;
202 int sx=0, sy=0, ex=sx+width, ey=sy+height, isl_x, is2_y, is3_x, is4_y;
203 float x1, yl1l, ax, ay, rho;

205 #pragma MUST_ITERATE (360, 360, 1);
206 for (k=0; k<360;k++) { rho = kx2-360;

207 #pragma MUST_ITERATE (180, 180);

208 #pragma UNROLL (20) ;

209 for (jk=0; jk<180; jk++)

210 if (h[jk+180xk] > treshold) {

211 J=3k-90;

212 hct = 0;

213 x1 = rho*cosT[absM(j)]; vyl = ((j<0)?-1:1)*rho*sinT[absM(]j)]; /* get a point on line
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*/

ax = yl; ay = -xl; /x get direction vector x/

isl_x = xl-sx+(sy-yl)+*ax/ay; 1s2_y = yl-sy+(ex—-x1l)~*ay/ax; /+» calculate intersections
x/

is3_x = xl-sx+(ey-yl)+*ax/ay; is4_y = yl-sy+(sx—-x1)~*ay/ax;

if ((isl_x>=sx)&&(isl_x<ex)) { x[hct]=isl_x; ylhct++]=sy; } /* find hits =/

1f ((is3_x>=sx)&&(1is3_x<ex)) { xlhct]l=is3_x; yl[hct++]=ey; }

if ((is2_y>=sy) &&(is2_y<ey)) { xlhctl=ex; ylhct++]=is2_y; }

if ((is4_y>=sy) &&(is4d_y<ey)) { xlhctl=sx; ylhct++]=isd_y; }

if (hct==2) print_line (255, x[0], yI[0], x[1], vI[1]);

void roberts (int treshold) {
/* Run—-in-vars =/ int k, j;
int convy, convx; int res;
register int pl,p2,p3,p4;

#pragma MUST_ITERATE (height, height);
for (k=0; k<height-1;k++) { // Lines
pl = mint [k*width];
p4 mint [ (k+1)xwidth];
#pragma MUST_ITERATE (width,

width) ;

for (j=0; j<width-1;3++) { // Columns
//ROBERTS
p2 = mint [j+l+kxwidth];

p3 mint [j+1+ (k+1) *width];
convy = -pl+p4-p2+p3;

convx = —-pl+p2-pd+p3;
pl = p2; p4 = p3;
res = ((absM(convx) + absM(convy)) >= treshold)?255:
mint2[j+k+«width]=res;
}
}
}
void hough_lines_slow() {
/+ Run—-in-vars «/ int k,j, a; float rho;
for (k=0; k<360%180;k++)
h[k] = 0;
for (k=1; k<height;k++) // Lines
for (j=1; j<width;j++) // Columns
if(mint2[j + k*width]) for (a=0;a<180;a++) { // Angles

rho (j*cos (axPI/180.0) + k*sin(a*xPI/180.0));
if (rho) h[a+180« (((int)rho+360)/2)]1++;

void start_boucle () {
PSP_VPBEChannelParams beinitParams;
PSP_VPFEChannelParams feinitParams;

GIO_Attrs gioAttrs = GIO_ATTRS;
PSP_VPSSSurfaceParams *FBAddr = NULL;
PSP_VPSSSurfaceParams xFBAddrOut = NULL;
Uint32 j = 0;

Uint32 k = 0;

Uint32 1 = 0;

int i,v = 0;

for (1i=0;1<359;i++) {
sinT[1i] sin (i*PI/180.0);
cosT[1i] cos (ixPI/180.0);

for (1=-2000;1<2000; i++)
arctanT [1+2000] atan(i/10.0);

//Init CSL du DMA

54

/% print =/



285 edma3init () ;

287 // Create ccdc channel
288 feinitParams.id = PSP_VPFE_CCDC;

289 feinitParams.params = (PSP_VPFECcdcConfigParamsx)&ccdcParams;

290 ccdcHandle = FVID_create( "/VPFEO", IOM_INOUT, NULL, &feinitParams,
291 &gioAttrs);

292 if ( NULL == ccdcHandle) {

293 return;

294 }

296 // Configure the TVP5146 video decoder
297 if( FVID_control ( ccdcHandle,

298 VPFE_ExtVD_BASE + PSP_VPSS_EXT_VIDEO_DECODER_CONFIG,
299 &tvpSl46Params) != IOM_COMPLETED ) {

300 return;

301 } else {

302 for ( 1=0; i < NO_OF_BUFFERS; i++ ) {

303 if ( IOM_COMPLETED == FVID_alloc( ccdcHandle, &ccdcAllocFB[i] ) ) {
304 if ( IOM_COMPLETED != FVID_qgueue (ccdcHandle, ccdcAllocFB[i] ) ) |
305 return;

306 }

307 }

308 }

309 }

310

311 // Create video channel

312 beinitParams.id = PSP_VPBE_VIDEO_O;

313 beinitParams.params = (PSP_VPBEOsdConfigParamsx*)&vidOParams;

314 vidOHandle = FVID_create( "/VPBEO", IOM_INOUT,NULL, &beinitParams,

315 &gioAttrs );

316 if ( NULL == vidOHandle ) {

317 return;

318 } else {

319 for ( i=0; i<NO_OF_BUFFERS; i++ ) {

320 if ( IOM_COMPLETED == FVID_alloc( vidOHandle, &vidAllocFBI[i] ) ) {
321 if ( IOM_COMPLETED != FVID_queue( vidOHandle, vidAllocFBI[i]) ) {
322 return;

323 }

324 }

325 }

326 }

327

328 // Create venc channel

329 beinitParams.id = PSP_VPBE_VENC;

330 beinitParams.params = (PSP_VPBEVencConfigParams «)&vencParams;

331 vencHandle = FVID_create( "/VPBEO", IOM_INOUT, NULL, &beinitParams,

332 &gioAttrs);

333 if ( NULL == vencHandle ) {

334 return;

335 }

336

337 //Allocation memoire et la structure qui contiendra 1’image

338 FVID_alloc( ccdcHandle, &FBAddr );
339 FVID_alloc( ccdcHandle, &FBAddrOut );

340
341

342 // BOUCLE ACQUISITION & COPIE & AFFICHAGE DESIMAGES============
343 // 1)Acquisition

344 for( i = 0; 1 < 1000000; i++ ) {

346 // Load image

347 if ( IOM_COMPLETED != FVID_exchange( ccdcHandle, &FBAddr ) ) {
348 return;

349 }

350

351 v = 1%10;

352

353 // Make the Y matrix transposed

354 1=0; for(k=0; k<height;k++) // Lines

355 for (j=0; j<width;j++) // Columns

356 mint2[k+j+xheight] = (float) (* ((unsigned char «*)FBAddr->frameBufferPtr +
357 (J*x2 + kx2%720)*2 + 1));
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359
360
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376
377
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379
380
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383
384
385
386
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389
390
391
392
393
394

396
397
398
399
400
401

403

// integer

profiling[5%v] = C64P_getltime();
deriche2 (0.2);
profiling[5%v+1l] = C64P_getltime();

roberts (75);
profiling[5*v+2] =
hough_lines_slow();
profiling[5*v+3] =
print_lines (100);
profiling[5+«v+4] = C64P_getltime();

C64P_getltime () ;

C64P_getltime () ;

// Print the Y matrix
1=0; for(k=0; k<height;k++) // Lines
for (§=0; j<width;j++) { // Columns
* ((unsigned char x)FBAddrOut->frameBufferPtr + (j + kx720)%x2) = 128;
* ((unsigned char «*)FBAddrOut->frameBufferPtr + (j + kx720)%2 + 1) =
(unsigned char) (mint[1]);
1++;

"

LOG_printf ( &trace, " Affichage iteration = %u", i );
// Print changed image

if ( IOM_COMPLETED != FVID_exchange( vidOHandle, &FBAddroOut) ) {
return;

}

// ==== FIN BOUCLE ACQUISITION & COPIE & AFFICHAGE DESIMAGES=======

FVID_free(vidOHandle, FBAddr);
FVID_free (ccdcHandle, FBAddrOut);

// Free Memory Buffers

for( i=0; i< NO_OF_BUFFERS; i++ ) {
FVID_free( ccdcHandle, ccdcAllocFBI[i] );
FVID_free( vidOHandle, vidAllocFBI[i] );

// Delete Channels

FVID_delete( ccdcHandle );
FVID_delete ( vidOHandle );
FVID_delete ( vencHandle );

return;

56



11 Appendix D - Optimized version

Listing 21: Optimized version

/[ x*

Optimized version of given image processing chain.
Authors: Divij Babbar, Kubicka Matej (I4-IMC)

Date: 1/6/2012
Version: Naive

*/

© X N o oA W N e

10 #include <std.h>
11 #include <gio.h>
12 #include <log.h>
13 #include <math.h>

15 #include "psp_vpfe.h"
16 #include "psp_vpbe.h"
17 #include "fvid.h"

19 #include "psp_tvp5146_extVidDecoder.h"

21 f#include <soc.h>
22 #include <cslr_ccdc.h>

24 #include <soc.h>
25 #include <cslr_sysctl.h>

28 //pour logger ce qui se passe avec log.h (voir DSPBIOS)
29 extern LOG_Obj trace; // BIOS LOG object

32 /+ extrait de 1’exemple EDMA3

33 // 48K L1 SRAM [0x10£f04000, 0x10£10000), 0xc000 length

34 // 32K L1 Dcache [0x10£f10000, 0x10£f18000), 0x8000 length

35 // 128K L2 SRAM [0x10800000, 0x10820000), 0x20000 length

36 // 128M DDR2 [0x80000000, 0x88000000), 0x8000000 length are cacheable
37 x/

40 #define ADDR(in, x,y) in[(x) + (y)»*width]
41 #define absM(v) (v<0)?(-v): (V)

43 #ifndef PI
44 f#define PI 3.14159265
45 #endif

47 #define NO_OF_BUFFERS (2u)
48 #define width 300
49 #define height 200

52 // Global Variable Defined
53 static PSP_VPSSSurfaceParams *ccdcAllocFB[NO_OF_BUFFERS]={NULL};
54 static PSP_VPSSSurfaceParams *vidAllocFB|[NO_OF_BUFFERS] ={NULL};

56 static FVID_Handle ccdcHandle;
57 static FVID_Handle vidOHandle;
58 static FVID_Handle vencHandle;

60 static PSP_VPFE_TVP5146_ConfigParams tvp5l46Params = {
61 TRUE, // enable656Sync

62 PSP_VPFE_TVP5146_FORMAT_COMPOSITE, // format

63 PSP_VPFE_TVP5146_MODE_AUTO // mode

64 };

66 static PSP_VPFECcdcConfigParams ccdcParams = {

67 PSP_VPFE_CCDC_YCBCR_8, // dataFlow
68 PSP_VPSS_FRAME_MODE, // ffMode
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69 480, // height

70 720, // width

71 (720 *2), // pitch

72 0, // horzStartPix
73 0, // vertStartPix
74 NULL, // appCallback
75 {

76 PSP_VPFE_TVP5146_Open, // extVD Fxn
77 PSP_VPFE_TVP5146_Close,

78 PSP_VPFE_TVP5146_Control,

79 br

80 0 //segld

81 };
82
83 static PSP_VPBEOsdConfigParams vidOParams = {

84 PSP_VPSS_FRAME_MODE, // ffmode

85 PSP_VPSS_BITS16, // bitsPerPixel
86 //PSP_VPBE_RGB_888, //ajout TG

87 PSP_VPBE_YCbCr422, // colorFormat
88 (720 * (16/8u)), // pitch

89 0, // leftMargin
90 0, // topMargin
91 720, // width

92 480, // height

93 0, // segld

94 PSP_VPBE_ZOOM_IDENTITY, // hScaling

95 PSP_VPBE_ZOOM_IDENTITY, // vScaling

96 PSP_VPBE_EXP_IDENTITY, // hExpansion
97 PSP_VPBE_EXP_IDENTITY, // vExpansion
98 NULL // appCallback
99 };

100

101 static PSP_VPBEVencConfigParams vencParams = {
102 PSP_VPBE_DISPLAY_NTSC_INTERLACED_COMPOSITE // Display Standard
103 };

104

105 #pragma DATA_SECTION (mint, ".L2Buffer")

106 unsigned char mint [300x2007];

107 #pragma DATA_SECTION (mint2, ".ExtBuffer")

108 unsigned char mint2[300%2007];

109 #pragma DATA_SECTION (h, ".ExtBuffer")

110 short h[360%x180];

111

112 unsigned int profiling[50];

114 float sinT[360];
115 float cosT[360];
116 float arctanT[4000];

118 #pragma DATA_SECTION (1, ".L2Buffer")
119 int 1[width];

121 void transpose (unsigned char *in, unsigned char =*out, int w, int h)
122 {

123 int n,m, s=0;

124 for (n=0; n<h;n++)

125 for (m=0; m<w;m++)

126 out [mxh+n] = in[s++];
127 }

120 void deriche2 (float g)

130 {

131 int igl = ((1-g)*(l-g))*1024;
132 int ig2 = (2%g)x1024;

133 int igg = (gxg)*1024;

134

135 int i,1ii,k;

136 int pl, p2, p3;

137

138 #pragma MUST_ITERATE (width, width);

139 for(i = 0 ; i < width ; i++){ // lines
140 ii=ixheight;

141 p3=igl* (mint2 [ii++])>>10;
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142 p2=(igl*mint2 [ii++]+ig2%«1[0])>>10;

143 1[0]1=p3; 1l[1l]l=p2;

144 #pragma MUST_ITERATE (198, 198,1);
145 for (k=2; k<height;k++) {

146 pl = p2;

147 p2 = p3;

148 p3 = (iglx (mint2[ii++]) + ig2*(p2) - iggx*(pl))>>10;
149 1[k] = p3;

150 }

151

152 mint2[ii--]1=p3;

153 mint2[ii--]1=p2;

154 #pragma MUST_ITERATE (198, 198,1);
155 for (k=height-3;k>=0;k—-) {

156 pl = p2;

157 P2 = p3;

158 p3 = (iglx(1[k]) + ig2*(p2) - iggx(pl))>>10;
159 mint2[ii--] = (unsigned char)p3;
160 }

161 }

162

163 transpose (mint2, mint, height, width);
164

165 #pragma MUST_ITERATE (height, height);
166 for(i = 0 ; i1 < height ; i++){ // lines

167 ii=ixwidth;

168 p3=(igl+mint [1ii++])>>10;

169 p2=(igl*mint [1i++]+1g2x1[0])>>10;

170 1[0]=p3; 1[1]1=p2;

171 #pragma MUST_ITERATE (298, 298,1);

172 for (k=2; k<width; k++) {

173 pl = p2;

174 p2 = p3;

175 p3 = (iglx (mint[ii++]) + ig2*(p2) - iggx*(pl))>>10;

176 1[k] = p3;

177 }

178

179 mint [1i--]1=p3;

180 mint [1i--]1=p2;

181 #pragma MUST_ITERATE (298, 298,1);

182 for (k=width-3;k>=0;k——) {

183 pl = p2;

184 p2 = p3;

185 p3 = (iglx(1l[k]) + 1ig2x(p2) - iggx(pl))>>10;

186 mint [ii--] = (unsigned char) p3;

187 }

188 }

189 }

190

191 void print_line(float intensity, int x1, int yl, int x2, int y2)

192 |

193 int i; int d = (int)sqgrt ((x2-x1)x* (x2-x1)+(y2-yl)*(y2-y1l)); /*» line size «/

194 float ax=(x2-x1)/(float)d, ay=(y2-yl)/(float)d; /* direction vectors »*/

195 for (i=0; i<d; i++) /% print pixel %/ mint[(xl+(int) (ax*1))+(yl+(int) (ay*1i))*width] =
intensity;

196}

197

198 void print_lines (unsigned int treshold)

199 |

200 int J,jk,k, x[2], yI[2], hct;

201 int sx=0, sy=0, ex=sx+width, ey=sy+theight, isl_x, is2_y, is3_x, is4d_y;

202 float x1, yl, ax, ay, rho;

203

204 #pragma MUST_ITERATE (360, 360, 1);
205 for (k=0; k<360;k++) { rho = kx2-360;

206 #pragma MUST_ITERATE (180, 180);

207 #pragma UNROLL (20) ;

208 for (jk=0; jk<180; jk++)

209 if (h[jk+180+k] > treshold) {

210 j=jk-90; hct = 0;

211 x1 = rhoxcosT[absM(]J)]; yl = ((j<0)?-1:1)+*rhoxsinT[absM(3j)]; /* get a point on line
*/

212 ax = yl; ay = -xl; /% get direction vector x/
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213

isl_x = xl-sx+(sy-yl)+*ax/ay; 1s2_y = yl-sy+(ex—-x1)~*ay/ax; /*» calculate intersections

*/
is3_x = xl-sx+(ey-yl)+*ax/ay; 1isd_y = yl-sy+(sx-x1)~*ay/ax;

1if((isl_x>=sx)&&(isl_x<ex)) { xlhct]l=isl_x; ylhct++]=sy; } /+ find hits

1f ((is3_x>=sx)&&(1s3_x<ex)) { xlhct]=is3_x; ylhct++]=ey; }
if ((is2_y>=sy) &&(is2_y<ey)) { xlhctl]l=ex; ylhct++]=is2_y; }
if ((is4_y>=sy)&&(is4d_y<ey)) { xlhctl=sx; ylhct++]=1isd_y; }
if (hct==2) print_line (255, x[0], y[0], x[11, yI[1l1); /* print »*/

void hough_lines (int treshold) {
/+ Run—-in-vars x/ int k,j; float rho;
int convy, convx; float conv ; int res, a;
register int pl,p2,p3,p4;
int v;

#pragma MUST_ITERATE (360x180, 360%x180, 1);
for (k=0; k<360x180;k++)
h[k] = 0;

#pragma MUST_ITERATE (height, height);
for (k=0; k<height-1;k++) { // Lines
pl = mint [k*xwidth];
p4 = mint[ (k+1)~width];
#pragma MUST_ITERATE (width, width);
for (3=0; Jj<width-1;j++) { // Columns

//ROBERTS

p2 = mint[Jj+1l+kxwidth];

p3 = mint [j+1+ (k+1)*xwidth];

convy = -pl+pd-p2+p3;

convx = -pl+p2-pd+p3;

pl = p2; pd = p3;

res = ((absM(convx) + absM(convy)) >= treshold)?255:0;

if (res!=0) {
conv = (convy/ (float)convx) ;
if (conv >= 200) a = 90;
else if (conv < -200) a=-90;
else a = (int) (arctanT[ (int) (conv*10)+2000]%57.295);
rho = (j*cosT[absM(a)] + ((a<0)?-1:1)+*kxsinT[absM(a)]);
if (rho) h[a+90+180* (((int)rho+360)>>1)]++;

void start_boucle () {
PSP_VPBEChannelParams beinitParams;
PSP_VPFEChannelParams feinitParams;
GIO_Attrs gioAttrs = GIO_ATTRS;
PSP_VPSSSurfaceParams *FBAddr = NULL;
PSP_VPSSSurfaceParams xFBAddrOut = NULL;

Uint32 j = 0;
Uint32 k = 0;
Uint32 1 = 0;

int i,v = 0;
for (i=0;1i<359;i++) {

sinT[i] = sin(ixPI/180.0);
cosT[i] = cos(i%xPI/180.0);

for (1=-2000;1<2000; i++)
arctanT[1i+42000] = atan(i/10.0);

//Init CSL du DMA
edma3init () ;
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286 // Create ccdc channel

287 feinitParams.id = PSP_VPFE_CCDC;

288 feinitParams.params = (PSP_VPFECcdcConfigParamsx)&ccdcParams;

289 ccdcHandle = FVID_create( "/VPFEO", IOM_INOUT, NULL, &feinitParams,
290 &gioAttrs);

291 if ( NULL == ccdcHandle) {

292 return;

293 }

204

295 // Configure the TVP5146 video decoder
296 if ( FVID_control ( ccdcHandle,

297 VPFE_ExtVD_BASE + PSP_VPSS_EXT_VIDEO_DECODER_CONFIG,
298 &tvp5l46Params) != IOM_COMPLETED ) {

299 return;

300 } else {

301 for ( 1i=0; i < NO_OF_BUFFERS; i++ ) {

302 if ( IOM_COMPLETED == FVID_alloc( ccdcHandle, &ccdcAllocFBI[i] ) ) {
303 if ( IOM_COMPLETED != FVID_qgueue (ccdcHandle, ccdcAllocFBI[i] ) ) {
304 return;

305 }

306 }

307 }

308 }

309

310 // Create video channel

311 beinitParams.id = PSP_VPBE_VIDEO_O;

312 beinitParams.params = (PSP_VPBEOsdConfigParamsx)&vidOParams;

313 vidOHandle = FVID_create( "/VPBEO", IOM_INOUT,NULL, &beinitParams,

314 &gioAttrs );

315 if ( NULL == vidOHandle ) {

316 return;

317 } else {

318 for ( 1=0; i<NO_OF_BUFFERS; i++ ) {

319 if ( IOM_COMPLETED == FVID_alloc( vidOHandle, &vidAllocFBI[i] ) ) {
320 if ( IOM_COMPLETED != FVID_queue( vidOHandle, vidAllocFBI[i]) ) {
321 return;

322 }

323 }

324 }

325 }

326

327 // Create venc channel

328 beinitParams.id = PSP_VPBE_VENC;

329 beinitParams.params = (PSP_VPBEVencConfigParams x)&vencParams;

330 vencHandle = FVID_create( "/VPBEO", IOM_INOUT, NULL, &beinitParams,

331 &gioAttrs);

332 if ( NULL == vencHandle ) {

333 return;

334 }

335

336 //Allocation memoire et la structure qui contiendra 1’image

337 FVID_alloc( ccdcHandle, &FBAddr );
338 FVID_alloc( ccdcHandle, &FBAddrOut );

339

340

341 /[ ================ BOUCLE ACQUISITION & COPIE & AFFICHAGE DESIMAGES============
342 // 1)Acquisition

343 for( i = 0; 1 < 1000000; i++ ) {

344

345 // Load image

346 if ( IOM_COMPLETED != FVID_exchange( ccdcHandle, &FBAddr ) ) {

347 return;

348 }

349

350 v = 1%10;

351

352 // Make the Y matrix transposed

353 1=0; for (k=0; k<height;k++) // Lines

354 for (j=0; j<width;j++) // Columns

355 mint2[k+jxheight] = (unsigned char) ( ((unsigned char x)FBAddr->frameBufferPtr
356 + (%2 + kx2%720)*x2 + 1));
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359
360

362
363
364
365
366
367

369
370
371
372
373
374

376
377
378
379
380
381

383
384
385
386
387

389
390
391
392
393
394

396
397
398
399
400
401

// integer

profiling[5*v] = C64P_getltime();
deriche2(0.2);
profiling[5+v+1l] = C64P_getltime () ;

profiling [5*v+2] C64P_getltime () ;
hough_1lines (10);
profiling[5%v+3]
print_lines (20);

profiling[5%v+4]

C64P_getltime () ;

C64P_getltime () ;

// Print the Y matrix
1=0; for(k=0; k<height;k++) // Lines
for (§=0; j<width;j++) { // Columns
* ((unsigned char «*)FBAddrOut->frameBufferPtr + (j + kx720)%2) = 128;
* ((unsigned char «)FBAddrOut->frameBufferPtr + (j + kx720)%2 + 1) =
(unsigned char) (mint[1]);
1++;

LOG_printf ( &trace, " Affichage iteration = %u", i );
// Print changed image
if ( IOM_COMPLETED != FVID_exchange( vidOHandle, &FBAddrOut) ) {

return;

}

// FIN BOUCLE ACQUISITION & COPIE & AFFICHAGE DESIMAGES==========

FVID_free(vidOHandle, FBAddr);
FVID_free (ccdcHandle, FBAddrOut);

// Free Memory Buffers

for( i=0; i< NO_OF_BUFFERS; i++ ) {
FVID_free( ccdcHandle, ccdcAllocFBI[i] );
FVID_free( vidOHandle, vidAllocFBI[i] );

// Delete Channels

FVID_delete( ccdcHandle );
FVID_delete( vidOHandle );
FVID_delete( vencHandle );

return;
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